通用LTI多端口系统的高效ga宏建模

D. Deschrijver, T. Dhaene
{"title":"通用LTI多端口系统的高效ga宏建模","authors":"D. Deschrijver, T. Dhaene","doi":"10.1109/SPI.2004.1409016","DOIUrl":null,"url":null,"abstract":"A numerically robust sampling and rational fitting method is introduced, that models the entire state-space matrix of multiple-input-multiple-output (MIMO) linear time-invariant (LTI) systems. The algorithm adaptively builds an accurate rational pole-residue model, based on a minimal set of support samples. During the modeling process, no prior knowledge of the system's dynamics is required. The \"survival-of-the-fittest\" principle of a genetic algorithm (GA) provides a reliable way to detect convergence of the modeling process.","PeriodicalId":119776,"journal":{"name":"Proceedings. 8th IEEE Workshop on Signal Propagation on Interconnects","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Efficient GA-inspired macro-modeling of general LTI multi-port systems\",\"authors\":\"D. Deschrijver, T. Dhaene\",\"doi\":\"10.1109/SPI.2004.1409016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A numerically robust sampling and rational fitting method is introduced, that models the entire state-space matrix of multiple-input-multiple-output (MIMO) linear time-invariant (LTI) systems. The algorithm adaptively builds an accurate rational pole-residue model, based on a minimal set of support samples. During the modeling process, no prior knowledge of the system's dynamics is required. The \\\"survival-of-the-fittest\\\" principle of a genetic algorithm (GA) provides a reliable way to detect convergence of the modeling process.\",\"PeriodicalId\":119776,\"journal\":{\"name\":\"Proceedings. 8th IEEE Workshop on Signal Propagation on Interconnects\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 8th IEEE Workshop on Signal Propagation on Interconnects\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPI.2004.1409016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 8th IEEE Workshop on Signal Propagation on Interconnects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPI.2004.1409016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

针对多输入多输出(MIMO)线性时不变(LTI)系统的整个状态空间矩阵,提出了一种数值鲁棒采样和合理拟合方法。该算法基于最小支持样本集自适应构建精确的有理极点残数模型。在建模过程中,不需要系统动力学的先验知识。遗传算法的“适者生存”原则提供了一种可靠的方法来检测建模过程的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient GA-inspired macro-modeling of general LTI multi-port systems
A numerically robust sampling and rational fitting method is introduced, that models the entire state-space matrix of multiple-input-multiple-output (MIMO) linear time-invariant (LTI) systems. The algorithm adaptively builds an accurate rational pole-residue model, based on a minimal set of support samples. During the modeling process, no prior knowledge of the system's dynamics is required. The "survival-of-the-fittest" principle of a genetic algorithm (GA) provides a reliable way to detect convergence of the modeling process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信