固定翼微型飞行器的非线性路径跟踪策略

G. Flores, I. Lugo-Cárdenas, R. Lozano
{"title":"固定翼微型飞行器的非线性路径跟踪策略","authors":"G. Flores, I. Lugo-Cárdenas, R. Lozano","doi":"10.1109/ICUAS.2013.6564789","DOIUrl":null,"url":null,"abstract":"In this paper, a Lyapunov-based control law is developed to steer a fixed-wing mini aerial vehicle (MAV) along a desired path. The proposed controller overcomes stringent initial condition constraints that are present in several path following strategies in the literature. The key idea behind the proposed strategy, is to minimize the error of the path-following trajectory by using a virtual particle, which should be tracked along the path. For this purpose, the particle speed is controlled, providing an extra degree of freedom. Controller design is stated by using Lyapunov techniques. The resulting control strategy yields global convergence of the current path of the MAV to the desired path. Simulations are presented using the simulator MAV3DSim, in order to demonstrate the effectiveness of the control law. Furthermore an experimental platform called MINAVE I is introduced.","PeriodicalId":322089,"journal":{"name":"2013 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"A nonlinear path-following strategy for a fixed-wing MAV\",\"authors\":\"G. Flores, I. Lugo-Cárdenas, R. Lozano\",\"doi\":\"10.1109/ICUAS.2013.6564789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a Lyapunov-based control law is developed to steer a fixed-wing mini aerial vehicle (MAV) along a desired path. The proposed controller overcomes stringent initial condition constraints that are present in several path following strategies in the literature. The key idea behind the proposed strategy, is to minimize the error of the path-following trajectory by using a virtual particle, which should be tracked along the path. For this purpose, the particle speed is controlled, providing an extra degree of freedom. Controller design is stated by using Lyapunov techniques. The resulting control strategy yields global convergence of the current path of the MAV to the desired path. Simulations are presented using the simulator MAV3DSim, in order to demonstrate the effectiveness of the control law. Furthermore an experimental platform called MINAVE I is introduced.\",\"PeriodicalId\":322089,\"journal\":{\"name\":\"2013 International Conference on Unmanned Aircraft Systems (ICUAS)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Unmanned Aircraft Systems (ICUAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUAS.2013.6564789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS.2013.6564789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

本文提出了一种基于李雅普诺夫的控制律,使固定翼微型飞行器沿预定路径飞行。所提出的控制器克服了文献中几种路径跟随策略中存在的严格初始条件约束。该策略的关键思想是通过使用沿路径跟踪的虚拟粒子来最小化路径跟踪轨迹的误差。为此,粒子速度受到控制,提供了额外的自由度。控制器设计采用李亚普诺夫技术。由此产生的控制策略使MAV的当前路径全局收敛到期望路径。利用仿真器MAV3DSim进行了仿真,验证了控制律的有效性。此外,还介绍了一个名为MINAVE I的实验平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A nonlinear path-following strategy for a fixed-wing MAV
In this paper, a Lyapunov-based control law is developed to steer a fixed-wing mini aerial vehicle (MAV) along a desired path. The proposed controller overcomes stringent initial condition constraints that are present in several path following strategies in the literature. The key idea behind the proposed strategy, is to minimize the error of the path-following trajectory by using a virtual particle, which should be tracked along the path. For this purpose, the particle speed is controlled, providing an extra degree of freedom. Controller design is stated by using Lyapunov techniques. The resulting control strategy yields global convergence of the current path of the MAV to the desired path. Simulations are presented using the simulator MAV3DSim, in order to demonstrate the effectiveness of the control law. Furthermore an experimental platform called MINAVE I is introduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信