使用最先进的分类方法集成多传感器数据

Bhekisipho Twala, F. Mekuria
{"title":"使用最先进的分类方法集成多传感器数据","authors":"Bhekisipho Twala, F. Mekuria","doi":"10.1109/AFRCON.2013.6757711","DOIUrl":null,"url":null,"abstract":"Detection and identification from sensing image is a common task for many applications. In order to improve the performance of detection and identification the use of multiple classifier combination is demonstrated and evaluated in the paper using two industrial image datasets. Experiments show that multiple classifier combination can improve the performance of image classification and image detection and identification with boosting and bagging achieve higher accuracy rates. Accordingly, good performance is consistently derived from static parallel systems.","PeriodicalId":159306,"journal":{"name":"2013 Africon","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ensemble multisensor data using state-of-the-art classification methods\",\"authors\":\"Bhekisipho Twala, F. Mekuria\",\"doi\":\"10.1109/AFRCON.2013.6757711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detection and identification from sensing image is a common task for many applications. In order to improve the performance of detection and identification the use of multiple classifier combination is demonstrated and evaluated in the paper using two industrial image datasets. Experiments show that multiple classifier combination can improve the performance of image classification and image detection and identification with boosting and bagging achieve higher accuracy rates. Accordingly, good performance is consistently derived from static parallel systems.\",\"PeriodicalId\":159306,\"journal\":{\"name\":\"2013 Africon\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Africon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AFRCON.2013.6757711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Africon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFRCON.2013.6757711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

从传感图像中检测和识别是许多应用的共同任务。为了提高检测和识别的性能,本文利用两个工业图像数据集对多分类器组合的使用进行了演示和评估。实验表明,多分类器组合可以提高图像分类性能,图像检测和识别的提升和装袋达到更高的准确率。因此,良好的性能始终来自静态并行系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ensemble multisensor data using state-of-the-art classification methods
Detection and identification from sensing image is a common task for many applications. In order to improve the performance of detection and identification the use of multiple classifier combination is demonstrated and evaluated in the paper using two industrial image datasets. Experiments show that multiple classifier combination can improve the performance of image classification and image detection and identification with boosting and bagging achieve higher accuracy rates. Accordingly, good performance is consistently derived from static parallel systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信