{"title":"双仿真元理论的轻量级形式化","authors":"Kaustuv Chaudhuri, M. Cimini, D. Miller","doi":"10.1145/2676724.2693170","DOIUrl":null,"url":null,"abstract":"Bisimilarity of two processes is formally established by producing a bisimulation relation that contains those two processes and obeys certain closure properties. In many situations, particularly when the underlying labeled transition system is unbounded, these bisimulation relations can be large and even infinite. The bisimulation-up-to technique has been developed to reduce the size of the relations being computed while retaining soundness, that is, the guarantee of the existence of a bisimulation. Such techniques are increasingly becoming a critical ingredient in the automated checking of bisimilarity. This paper is devoted to the formalization of the meta theory of several major bisimulation-up-to techniques for the process calculi CCS and the π-calculus (with replication). Our formalization is based on recent work on the proof theory of least and greatest fixpoints, particularly the use of relations defined (co-)inductively, and of co-inductive proofs about such relations, as implemented in the Abella theorem prover. An important feature of our formalization is that our definitions of the bisimulation-up-to relations are, in most cases, straightforward translations of published informal definitions, and our proofs clarify several technical details of the informal descriptions. Since the logic behind Abella also supports λ-tree syntax and generic reasoning using the ∇-quantifier, our treatment of the λ-calculus is both direct and natural.","PeriodicalId":187702,"journal":{"name":"Proceedings of the 2015 Conference on Certified Programs and Proofs","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Lightweight Formalization of the Metatheory of Bisimulation-Up-To\",\"authors\":\"Kaustuv Chaudhuri, M. Cimini, D. Miller\",\"doi\":\"10.1145/2676724.2693170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bisimilarity of two processes is formally established by producing a bisimulation relation that contains those two processes and obeys certain closure properties. In many situations, particularly when the underlying labeled transition system is unbounded, these bisimulation relations can be large and even infinite. The bisimulation-up-to technique has been developed to reduce the size of the relations being computed while retaining soundness, that is, the guarantee of the existence of a bisimulation. Such techniques are increasingly becoming a critical ingredient in the automated checking of bisimilarity. This paper is devoted to the formalization of the meta theory of several major bisimulation-up-to techniques for the process calculi CCS and the π-calculus (with replication). Our formalization is based on recent work on the proof theory of least and greatest fixpoints, particularly the use of relations defined (co-)inductively, and of co-inductive proofs about such relations, as implemented in the Abella theorem prover. An important feature of our formalization is that our definitions of the bisimulation-up-to relations are, in most cases, straightforward translations of published informal definitions, and our proofs clarify several technical details of the informal descriptions. Since the logic behind Abella also supports λ-tree syntax and generic reasoning using the ∇-quantifier, our treatment of the λ-calculus is both direct and natural.\",\"PeriodicalId\":187702,\"journal\":{\"name\":\"Proceedings of the 2015 Conference on Certified Programs and Proofs\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 Conference on Certified Programs and Proofs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2676724.2693170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 Conference on Certified Programs and Proofs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2676724.2693170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Lightweight Formalization of the Metatheory of Bisimulation-Up-To
Bisimilarity of two processes is formally established by producing a bisimulation relation that contains those two processes and obeys certain closure properties. In many situations, particularly when the underlying labeled transition system is unbounded, these bisimulation relations can be large and even infinite. The bisimulation-up-to technique has been developed to reduce the size of the relations being computed while retaining soundness, that is, the guarantee of the existence of a bisimulation. Such techniques are increasingly becoming a critical ingredient in the automated checking of bisimilarity. This paper is devoted to the formalization of the meta theory of several major bisimulation-up-to techniques for the process calculi CCS and the π-calculus (with replication). Our formalization is based on recent work on the proof theory of least and greatest fixpoints, particularly the use of relations defined (co-)inductively, and of co-inductive proofs about such relations, as implemented in the Abella theorem prover. An important feature of our formalization is that our definitions of the bisimulation-up-to relations are, in most cases, straightforward translations of published informal definitions, and our proofs clarify several technical details of the informal descriptions. Since the logic behind Abella also supports λ-tree syntax and generic reasoning using the ∇-quantifier, our treatment of the λ-calculus is both direct and natural.