GPU实现的一个音频指纹相似度搜索算法

Chahid Ouali, P. Dumouchel, Vishwa Gupta
{"title":"GPU实现的一个音频指纹相似度搜索算法","authors":"Chahid Ouali, P. Dumouchel, Vishwa Gupta","doi":"10.1109/CBMI.2015.7153625","DOIUrl":null,"url":null,"abstract":"This paper describes a parallel implementation of a promising similarity search algorithm for an audio fingerprinting system. Efficient parallel implementation on a GPU accelerates the search on a dataset containing over 61 million audio fingerprints. The similarity between two fingerprints is defined as the intersection of their elements. We evaluate GPU implementations of two intersection algorithms for this dataset. We show that intelligent use of the GPU memory spaces (shared memory in particular) that maximizes the number of concurrent threads has a significant impact on the overall compute time when using fingerprints of varying dimensions. With simple modifications we obtain up to 4 times better GPU performance when using GPU memory to maximize concurrent threads. Compared to the CPU only implementations, the proposed GPU implementation reduces run times by up to 150 times for one intersection algorithm and by up to 379 times for the other intersection algorithm.","PeriodicalId":387496,"journal":{"name":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"GPU implementation of an audio fingerprints similarity search algorithm\",\"authors\":\"Chahid Ouali, P. Dumouchel, Vishwa Gupta\",\"doi\":\"10.1109/CBMI.2015.7153625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a parallel implementation of a promising similarity search algorithm for an audio fingerprinting system. Efficient parallel implementation on a GPU accelerates the search on a dataset containing over 61 million audio fingerprints. The similarity between two fingerprints is defined as the intersection of their elements. We evaluate GPU implementations of two intersection algorithms for this dataset. We show that intelligent use of the GPU memory spaces (shared memory in particular) that maximizes the number of concurrent threads has a significant impact on the overall compute time when using fingerprints of varying dimensions. With simple modifications we obtain up to 4 times better GPU performance when using GPU memory to maximize concurrent threads. Compared to the CPU only implementations, the proposed GPU implementation reduces run times by up to 150 times for one intersection algorithm and by up to 379 times for the other intersection algorithm.\",\"PeriodicalId\":387496,\"journal\":{\"name\":\"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMI.2015.7153625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2015.7153625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文描述了一种用于音频指纹识别系统的相似度搜索算法的并行实现。在GPU上的高效并行实现加速了对包含超过6100万个音频指纹的数据集的搜索。两个指纹之间的相似性被定义为它们元素的交集。我们评估了该数据集的两种交集算法的GPU实现。我们表明,在使用不同维度的指纹时,智能地使用GPU内存空间(特别是共享内存)来最大化并发线程的数量会对总体计算时间产生重大影响。通过简单的修改,当使用GPU内存最大化并发线程时,我们获得了高达4倍的GPU性能。与仅使用CPU的实现相比,所提出的GPU实现将一个交集算法的运行时间减少了150倍,另一个交集算法的运行时间减少了379倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GPU implementation of an audio fingerprints similarity search algorithm
This paper describes a parallel implementation of a promising similarity search algorithm for an audio fingerprinting system. Efficient parallel implementation on a GPU accelerates the search on a dataset containing over 61 million audio fingerprints. The similarity between two fingerprints is defined as the intersection of their elements. We evaluate GPU implementations of two intersection algorithms for this dataset. We show that intelligent use of the GPU memory spaces (shared memory in particular) that maximizes the number of concurrent threads has a significant impact on the overall compute time when using fingerprints of varying dimensions. With simple modifications we obtain up to 4 times better GPU performance when using GPU memory to maximize concurrent threads. Compared to the CPU only implementations, the proposed GPU implementation reduces run times by up to 150 times for one intersection algorithm and by up to 379 times for the other intersection algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信