分布式硬件智能电网的进程感知IDS评估

Verena Menzel, Kai Oliver Großhanten, Anne Remke
{"title":"分布式硬件智能电网的进程感知IDS评估","authors":"Verena Menzel, Kai Oliver Großhanten, Anne Remke","doi":"10.1109/CSR57506.2023.10224985","DOIUrl":null,"url":null,"abstract":"Recent incidents clearly identify the need for improved (cyber) security in the power distribution grid. The communication infrastructure of a power grid (the Supervisory Control and Data Acquisition (SCADA) network) is often a lucrative target for cyber-attacks and manipulations. In a recent line of work, a process-aware approach was proposed to locally monitor the communicated data and detect anomalies and inconsistencies. Recently, that approach was extended to a neighborhood level and tested in a simulation environment. This paper takes the extended approach closer to practice and shows its feasibility on distributed hardware. We evaluate the hardware capacity, the chosen communication protocol, and the real-time capability with respect to performance on a Raspberry Pis cluster and compare it to the originally centralized test cases. Further, requirements for transforming the distributed prototype into a real-world application are discussed.","PeriodicalId":354918,"journal":{"name":"2023 IEEE International Conference on Cyber Security and Resilience (CSR)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating a Process-Aware IDS for Smart Grids on Distributed Hardware\",\"authors\":\"Verena Menzel, Kai Oliver Großhanten, Anne Remke\",\"doi\":\"10.1109/CSR57506.2023.10224985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent incidents clearly identify the need for improved (cyber) security in the power distribution grid. The communication infrastructure of a power grid (the Supervisory Control and Data Acquisition (SCADA) network) is often a lucrative target for cyber-attacks and manipulations. In a recent line of work, a process-aware approach was proposed to locally monitor the communicated data and detect anomalies and inconsistencies. Recently, that approach was extended to a neighborhood level and tested in a simulation environment. This paper takes the extended approach closer to practice and shows its feasibility on distributed hardware. We evaluate the hardware capacity, the chosen communication protocol, and the real-time capability with respect to performance on a Raspberry Pis cluster and compare it to the originally centralized test cases. Further, requirements for transforming the distributed prototype into a real-world application are discussed.\",\"PeriodicalId\":354918,\"journal\":{\"name\":\"2023 IEEE International Conference on Cyber Security and Resilience (CSR)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Cyber Security and Resilience (CSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSR57506.2023.10224985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Cyber Security and Resilience (CSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSR57506.2023.10224985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近的事件清楚地表明,需要提高配电网的(网络)安全。电网的通信基础设施(监控和数据采集(SCADA)网络)通常是网络攻击和操纵的有利可图的目标。在最近的工作中,提出了一种过程感知的方法来本地监视通信数据并检测异常和不一致。最近,这种方法被扩展到邻域水平,并在模拟环境中进行了测试。本文采用了更接近实际的扩展方法,并证明了其在分布式硬件上的可行性。我们在Raspberry Pis集群上评估硬件容量、选择的通信协议和实时性能,并将其与最初的集中式测试用例进行比较。此外,还讨论了将分布式原型转换为实际应用程序的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating a Process-Aware IDS for Smart Grids on Distributed Hardware
Recent incidents clearly identify the need for improved (cyber) security in the power distribution grid. The communication infrastructure of a power grid (the Supervisory Control and Data Acquisition (SCADA) network) is often a lucrative target for cyber-attacks and manipulations. In a recent line of work, a process-aware approach was proposed to locally monitor the communicated data and detect anomalies and inconsistencies. Recently, that approach was extended to a neighborhood level and tested in a simulation environment. This paper takes the extended approach closer to practice and shows its feasibility on distributed hardware. We evaluate the hardware capacity, the chosen communication protocol, and the real-time capability with respect to performance on a Raspberry Pis cluster and compare it to the originally centralized test cases. Further, requirements for transforming the distributed prototype into a real-world application are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信