在多个成对相对姿势下的姿势同步

Yifan Sun, Qi-Xing Huang
{"title":"在多个成对相对姿势下的姿势同步","authors":"Yifan Sun, Qi-Xing Huang","doi":"10.1109/CVPR52729.2023.01256","DOIUrl":null,"url":null,"abstract":"Pose synchronization, which seeks to estimate consistent absolute poses among a collection of objects from noisy relative poses estimated between pairs of objects in isolation, is a fundamental problem in many inverse applications. This paper studies an extreme setting where multiple relative pose estimates exist between each object pair, and the majority is incorrect. Popular methods that solve pose synchronization via recovering a low-rank matrix that encodes relative poses in block fail under this extreme setting. We introduce a three-step algorithm for pose synchronization under multiple relative pose inputs. The first step performs diffusion and clustering to compute the candidate poses of the input objects. We present a theoretical result to justify our diffusion formulation. The second step jointly optimizes the best pose for each object. The final step refines the output of the second step. Experimental results on benchmark datasets of structure-from-motion and scan-based geometry reconstruction show that our approach offers more accurate absolute poses than state-of-the-art pose synchronization techniques.","PeriodicalId":376416,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pose Synchronization under Multiple Pair-wise Relative Poses\",\"authors\":\"Yifan Sun, Qi-Xing Huang\",\"doi\":\"10.1109/CVPR52729.2023.01256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pose synchronization, which seeks to estimate consistent absolute poses among a collection of objects from noisy relative poses estimated between pairs of objects in isolation, is a fundamental problem in many inverse applications. This paper studies an extreme setting where multiple relative pose estimates exist between each object pair, and the majority is incorrect. Popular methods that solve pose synchronization via recovering a low-rank matrix that encodes relative poses in block fail under this extreme setting. We introduce a three-step algorithm for pose synchronization under multiple relative pose inputs. The first step performs diffusion and clustering to compute the candidate poses of the input objects. We present a theoretical result to justify our diffusion formulation. The second step jointly optimizes the best pose for each object. The final step refines the output of the second step. Experimental results on benchmark datasets of structure-from-motion and scan-based geometry reconstruction show that our approach offers more accurate absolute poses than state-of-the-art pose synchronization techniques.\",\"PeriodicalId\":376416,\"journal\":{\"name\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR52729.2023.01256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52729.2023.01256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

姿态同步是许多逆应用中的一个基本问题,它寻求从孤立的对对象之间估计的噪声相对姿态中估计出一组对象之间一致的绝对姿态。本文研究了一种极端情况,即每个目标对之间存在多个相对姿态估计,并且大多数估计是不正确的。在这种极端情况下,通过恢复编码块中相对姿态的低秩矩阵来解决姿态同步的流行方法失败了。在多个相对姿态输入条件下,提出了一种姿态同步的三步算法。第一步执行扩散和聚类来计算输入对象的候选姿态。我们提出了一个理论结果来证明我们的扩散公式。第二步共同优化每个物体的最佳姿势。最后一步细化第二步的输出。在基于运动的结构和基于扫描的几何重建的基准数据集上的实验结果表明,我们的方法比目前最先进的姿势同步技术提供了更精确的绝对姿势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pose Synchronization under Multiple Pair-wise Relative Poses
Pose synchronization, which seeks to estimate consistent absolute poses among a collection of objects from noisy relative poses estimated between pairs of objects in isolation, is a fundamental problem in many inverse applications. This paper studies an extreme setting where multiple relative pose estimates exist between each object pair, and the majority is incorrect. Popular methods that solve pose synchronization via recovering a low-rank matrix that encodes relative poses in block fail under this extreme setting. We introduce a three-step algorithm for pose synchronization under multiple relative pose inputs. The first step performs diffusion and clustering to compute the candidate poses of the input objects. We present a theoretical result to justify our diffusion formulation. The second step jointly optimizes the best pose for each object. The final step refines the output of the second step. Experimental results on benchmark datasets of structure-from-motion and scan-based geometry reconstruction show that our approach offers more accurate absolute poses than state-of-the-art pose synchronization techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信