手部几何识别系统性能

Miguel A. Ferrer, Joan Fabregas, M. Faúndez, J. B. Alonso, C. Travieso
{"title":"手部几何识别系统性能","authors":"Miguel A. Ferrer, Joan Fabregas, M. Faúndez, J. B. Alonso, C. Travieso","doi":"10.1109/CCST.2009.5335545","DOIUrl":null,"url":null,"abstract":"The effect of changing the image resolution over a biometric system based on hand geometry is analyzed in this paper. Image resolution is progressively diminished from an initial 120dpi resolution up to 24dpi. The robustness of the examined system is analyzed with 2 databases and two identifiers. The first database acquires the images of the hand underneath whereas the second database acquires the images over the hand. The first classifier identifies with a multiclass support vector machine whereas the second classifier identifies with a neural network with error correction output codes. The four experiments show that an image resolution of 72dpi offers a good trade-off between performance and image resolution for the 15 geometric features used.","PeriodicalId":117285,"journal":{"name":"43rd Annual 2009 International Carnahan Conference on Security Technology","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Hand geometry identification system performance\",\"authors\":\"Miguel A. Ferrer, Joan Fabregas, M. Faúndez, J. B. Alonso, C. Travieso\",\"doi\":\"10.1109/CCST.2009.5335545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of changing the image resolution over a biometric system based on hand geometry is analyzed in this paper. Image resolution is progressively diminished from an initial 120dpi resolution up to 24dpi. The robustness of the examined system is analyzed with 2 databases and two identifiers. The first database acquires the images of the hand underneath whereas the second database acquires the images over the hand. The first classifier identifies with a multiclass support vector machine whereas the second classifier identifies with a neural network with error correction output codes. The four experiments show that an image resolution of 72dpi offers a good trade-off between performance and image resolution for the 15 geometric features used.\",\"PeriodicalId\":117285,\"journal\":{\"name\":\"43rd Annual 2009 International Carnahan Conference on Security Technology\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"43rd Annual 2009 International Carnahan Conference on Security Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCST.2009.5335545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"43rd Annual 2009 International Carnahan Conference on Security Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCST.2009.5335545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

本文分析了改变图像分辨率对基于手几何的生物识别系统的影响。图像分辨率从最初的120dpi分辨率逐渐降低到24dpi。用2个数据库和2个标识符对被检测系统的鲁棒性进行了分析。第一数据库获取下面的手的图像,而第二数据库获取上面的手的图像。第一分类器使用多类支持向量机进行识别,第二分类器使用带有纠错输出码的神经网络进行识别。四个实验表明,72dpi的图像分辨率为所使用的15个几何特征提供了良好的性能和图像分辨率之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hand geometry identification system performance
The effect of changing the image resolution over a biometric system based on hand geometry is analyzed in this paper. Image resolution is progressively diminished from an initial 120dpi resolution up to 24dpi. The robustness of the examined system is analyzed with 2 databases and two identifiers. The first database acquires the images of the hand underneath whereas the second database acquires the images over the hand. The first classifier identifies with a multiclass support vector machine whereas the second classifier identifies with a neural network with error correction output codes. The four experiments show that an image resolution of 72dpi offers a good trade-off between performance and image resolution for the 15 geometric features used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信