强化采气过程中交替注气的流动特性

N. Mohammed, A. J. Abubakar, GC Enyi, Ghasem Nasr Ghavami
{"title":"强化采气过程中交替注气的流动特性","authors":"N. Mohammed, A. J. Abubakar, GC Enyi, Ghasem Nasr Ghavami","doi":"10.2118/198658-ms","DOIUrl":null,"url":null,"abstract":"\n Gas and liquid flooding using carbon dioxide (CO2), nitrogen (N2), or brine solution have become one of the promising enhanced gas (EGR) and oil recovery (EOR) technologies for residual hydrocarbons (HCs) enhancement in conventional oil and gas reservoir respectively. However, the flow mechanism between the displacing and displaced fluids are not yet clear, especially for the novel gas alternating gas injection method adopted in this study. This experimental study investigates the flow mechanism of N2-CO2-CH4 through gas alternating gas injection techniques in consolidated rocks during EGR. The research presents a better flow behaviour characteristic using a novel N2 alternating CO2 during EGR. These values were used in determining the optimum injection rate with the minimum in situ mixing and high displacement front. An experimental laboratory core flooding, experiment was done to imitate a detailed process of an unsteady state N2-CO2-CH4 displacement in Bandera grey core sample at 35-40°C of temperature, 1500 psig of pressure, and at 0.2, 0.4, 0.6, 0.8 and 1.0 ml/min N2 alternating CO2 injection rates to evaluate the displacement flow characteristics, such as diffusion coefficient, dispersion coefficient, density and viscosity, mobility ratio, and dispersivity. The CO2 was injected after 4-5 cm3 of N2 injection throughout the runs at the experimental condition. The findings indicated that gas alternating gas injection technique presents a better flow behaviour characteristic compared to that of individual CO2 or N2 injection. Such prominent behaviour was observed at 0.4 ml/min injection, with higher displacement front and longer CO2 breakthrough time. The mobility ratio of N2-CO2-CH4 was lower compared to that of N2-CH4 and CO2-CH4. This was due to the inclusion of nitrogen which acts as a barrier between the CO2 and displaced CH4. The later contributed significantly for the delayed in CO2 breakthrough especially at lower injection rates (0.2-0.4 ml/min) during the gas alternating gas EGR process. The overall molecular diffusion coefficients were found to be 22.99, 18.48 and 17.33 ×10-8 m2/s for N2-CH4, CO2-CH4, and CO2-N2 binary interaction respectively at the test condition. The dispersion coefficient increases with an increase in the injection rate due to rise in the interstitial velocity as the CO2 plume traverses through the core sample during the EGR process.","PeriodicalId":182237,"journal":{"name":"Day 3 Wed, October 23, 2019","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Flow Characteristics Through Gas Alternating Gas Injection During Enhanced Gas Recovery\",\"authors\":\"N. Mohammed, A. J. Abubakar, GC Enyi, Ghasem Nasr Ghavami\",\"doi\":\"10.2118/198658-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Gas and liquid flooding using carbon dioxide (CO2), nitrogen (N2), or brine solution have become one of the promising enhanced gas (EGR) and oil recovery (EOR) technologies for residual hydrocarbons (HCs) enhancement in conventional oil and gas reservoir respectively. However, the flow mechanism between the displacing and displaced fluids are not yet clear, especially for the novel gas alternating gas injection method adopted in this study. This experimental study investigates the flow mechanism of N2-CO2-CH4 through gas alternating gas injection techniques in consolidated rocks during EGR. The research presents a better flow behaviour characteristic using a novel N2 alternating CO2 during EGR. These values were used in determining the optimum injection rate with the minimum in situ mixing and high displacement front. An experimental laboratory core flooding, experiment was done to imitate a detailed process of an unsteady state N2-CO2-CH4 displacement in Bandera grey core sample at 35-40°C of temperature, 1500 psig of pressure, and at 0.2, 0.4, 0.6, 0.8 and 1.0 ml/min N2 alternating CO2 injection rates to evaluate the displacement flow characteristics, such as diffusion coefficient, dispersion coefficient, density and viscosity, mobility ratio, and dispersivity. The CO2 was injected after 4-5 cm3 of N2 injection throughout the runs at the experimental condition. The findings indicated that gas alternating gas injection technique presents a better flow behaviour characteristic compared to that of individual CO2 or N2 injection. Such prominent behaviour was observed at 0.4 ml/min injection, with higher displacement front and longer CO2 breakthrough time. The mobility ratio of N2-CO2-CH4 was lower compared to that of N2-CH4 and CO2-CH4. This was due to the inclusion of nitrogen which acts as a barrier between the CO2 and displaced CH4. The later contributed significantly for the delayed in CO2 breakthrough especially at lower injection rates (0.2-0.4 ml/min) during the gas alternating gas EGR process. The overall molecular diffusion coefficients were found to be 22.99, 18.48 and 17.33 ×10-8 m2/s for N2-CH4, CO2-CH4, and CO2-N2 binary interaction respectively at the test condition. The dispersion coefficient increases with an increase in the injection rate due to rise in the interstitial velocity as the CO2 plume traverses through the core sample during the EGR process.\",\"PeriodicalId\":182237,\"journal\":{\"name\":\"Day 3 Wed, October 23, 2019\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Wed, October 23, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/198658-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, October 23, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/198658-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

利用二氧化碳(CO2)、氮气(N2)或盐水溶液进行气驱和液驱,已分别成为常规油气藏中提高残余烃(hc)的增强气(EGR)和原油采收率(EOR)技术之一。然而,驱替液和被驱替液之间的流动机理尚不清楚,特别是本研究采用的新型气体交替注气方法。本实验研究了EGR过程中固结岩石中N2-CO2-CH4交替注气技术的流动机理。研究表明,采用新型N2交替CO2在EGR过程中具有更好的流动特性。这些值用于确定最小原位混合和高驱替前沿的最佳注入速率。在室内岩心驱替实验中,模拟了Bandera灰色岩心样品在35 ~ 40℃温度、1500 psig压力、0.2、0.4、0.6、0.8和1.0 ml/min N2交替CO2注入速率下N2-CO2- ch4非稳态驱替的详细过程,评价了扩散系数、弥散系数、密度粘度、流度比和分散性等驱替流动特性。在实验条件下,每次运行4-5 cm3的N2注入后注入CO2。研究结果表明,与单独注入CO2或N2相比,气体交替注气技术具有更好的流动特性。当注入量为0.4 ml/min时,具有较高的驱替前沿和较长的CO2突破时间。N2-CO2-CH4的迁移率比N2-CH4和CO2-CH4的迁移率低。这是由于含有氮,它在CO2和置换的CH4之间起屏障作用。后者是延迟CO2突破的重要原因,特别是在气体交替气体EGR过程中,较低的喷射速率(0.2-0.4 ml/min)。在实验条件下,N2-CH4、CO2-CH4和CO2-N2二元相互作用的总体分子扩散系数分别为22.99、18.48和17.33 ×10-8 m2/s。在EGR过程中,随着CO2羽流穿过岩心样品,由于间隙速度的增加,扩散系数随着注入速率的增加而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flow Characteristics Through Gas Alternating Gas Injection During Enhanced Gas Recovery
Gas and liquid flooding using carbon dioxide (CO2), nitrogen (N2), or brine solution have become one of the promising enhanced gas (EGR) and oil recovery (EOR) technologies for residual hydrocarbons (HCs) enhancement in conventional oil and gas reservoir respectively. However, the flow mechanism between the displacing and displaced fluids are not yet clear, especially for the novel gas alternating gas injection method adopted in this study. This experimental study investigates the flow mechanism of N2-CO2-CH4 through gas alternating gas injection techniques in consolidated rocks during EGR. The research presents a better flow behaviour characteristic using a novel N2 alternating CO2 during EGR. These values were used in determining the optimum injection rate with the minimum in situ mixing and high displacement front. An experimental laboratory core flooding, experiment was done to imitate a detailed process of an unsteady state N2-CO2-CH4 displacement in Bandera grey core sample at 35-40°C of temperature, 1500 psig of pressure, and at 0.2, 0.4, 0.6, 0.8 and 1.0 ml/min N2 alternating CO2 injection rates to evaluate the displacement flow characteristics, such as diffusion coefficient, dispersion coefficient, density and viscosity, mobility ratio, and dispersivity. The CO2 was injected after 4-5 cm3 of N2 injection throughout the runs at the experimental condition. The findings indicated that gas alternating gas injection technique presents a better flow behaviour characteristic compared to that of individual CO2 or N2 injection. Such prominent behaviour was observed at 0.4 ml/min injection, with higher displacement front and longer CO2 breakthrough time. The mobility ratio of N2-CO2-CH4 was lower compared to that of N2-CH4 and CO2-CH4. This was due to the inclusion of nitrogen which acts as a barrier between the CO2 and displaced CH4. The later contributed significantly for the delayed in CO2 breakthrough especially at lower injection rates (0.2-0.4 ml/min) during the gas alternating gas EGR process. The overall molecular diffusion coefficients were found to be 22.99, 18.48 and 17.33 ×10-8 m2/s for N2-CH4, CO2-CH4, and CO2-N2 binary interaction respectively at the test condition. The dispersion coefficient increases with an increase in the injection rate due to rise in the interstitial velocity as the CO2 plume traverses through the core sample during the EGR process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信