扩散反应负向交替模型:迈向复杂心律失常的快速模拟

C. B. Espinosa, Jorge Sánchez, O. Doessel, A. Loewe
{"title":"扩散反应负向交替模型:迈向复杂心律失常的快速模拟","authors":"C. B. Espinosa, Jorge Sánchez, O. Doessel, A. Loewe","doi":"10.22489/CinC.2022.054","DOIUrl":null,"url":null,"abstract":"Reaction-diffusion (RD) computer models are suitable to investigate the mechanisms of cardiac arrthymias but not directly applicable in clinical settings due to their computational cost. On the other hand, alternative faster eikonal models are incapable of reproducing reentrant activation when solved by iterative methods. The diffusion reaction eikonal alternant model (DREAM) is a new method in which eikonal and RD models are alternated to allow for reactivation. To solve the eikonal equation, the fast iterative method was modified and embedded into DREAM. Obtained activation times control transmembrane voltage courses in the RD model computing, while repolarization times are provided back to the eikonal model. For a planar wave-front in the center of a 2D patch, DREAM action potentials (APs) have a small overshoot in the upstroke compared to pure RD simulations (monodomain) but similar AP duration. DREAM conduction velocity does not increase near boundaries or stimulated areas as it occurs in RD. Anatomical reentry was reproduced with the S1-S2 protocol. This is the first time that an iterative method is used to solve the eikonal model in a version that admits reactivation. This method can facilitate uptake of computer models in clinical settings. Further improvements will allow to accurately represent even more complex patterns of arrhythmia.","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffusion Reaction Eikonal Alternant Model: Towards Fast Simulations of Complex Cardiac Arrhythmias\",\"authors\":\"C. B. Espinosa, Jorge Sánchez, O. Doessel, A. Loewe\",\"doi\":\"10.22489/CinC.2022.054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reaction-diffusion (RD) computer models are suitable to investigate the mechanisms of cardiac arrthymias but not directly applicable in clinical settings due to their computational cost. On the other hand, alternative faster eikonal models are incapable of reproducing reentrant activation when solved by iterative methods. The diffusion reaction eikonal alternant model (DREAM) is a new method in which eikonal and RD models are alternated to allow for reactivation. To solve the eikonal equation, the fast iterative method was modified and embedded into DREAM. Obtained activation times control transmembrane voltage courses in the RD model computing, while repolarization times are provided back to the eikonal model. For a planar wave-front in the center of a 2D patch, DREAM action potentials (APs) have a small overshoot in the upstroke compared to pure RD simulations (monodomain) but similar AP duration. DREAM conduction velocity does not increase near boundaries or stimulated areas as it occurs in RD. Anatomical reentry was reproduced with the S1-S2 protocol. This is the first time that an iterative method is used to solve the eikonal model in a version that admits reactivation. This method can facilitate uptake of computer models in clinical settings. Further improvements will allow to accurately represent even more complex patterns of arrhythmia.\",\"PeriodicalId\":117840,\"journal\":{\"name\":\"2022 Computing in Cardiology (CinC)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/CinC.2022.054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

反应扩散(RD)计算机模型适用于研究心律失常的机制,但由于其计算成本而不能直接应用于临床环境。另一方面,当使用迭代方法求解时,其他更快的eikonal模型无法再现可重入激活。DREAM扩散反应是一种新的扩散反应方法,该方法将扩散反应与RD模型交替进行,以允许再激活。为了求解eikonal方程,对快速迭代法进行了改进并嵌入到DREAM中。得到的激活次数在RD模型计算中控制跨膜电压过程,而复极化次数则提供回eikonal模型。对于二维斑块中心的平面波前,与纯RD模拟(单域)相比,DREAM动作电位(AP)在上冲程中有一个小的超调,但AP持续时间相似。梦传导速度在边界或刺激区域附近没有增加,而在RD中发生。解剖学上的再入用S1-S2方案再现。这是第一次在允许再激活的版本中使用迭代方法来求解eikonal模型。这种方法可以促进计算机模型在临床环境中的应用。进一步的改进将允许准确地表示更复杂的心律失常模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diffusion Reaction Eikonal Alternant Model: Towards Fast Simulations of Complex Cardiac Arrhythmias
Reaction-diffusion (RD) computer models are suitable to investigate the mechanisms of cardiac arrthymias but not directly applicable in clinical settings due to their computational cost. On the other hand, alternative faster eikonal models are incapable of reproducing reentrant activation when solved by iterative methods. The diffusion reaction eikonal alternant model (DREAM) is a new method in which eikonal and RD models are alternated to allow for reactivation. To solve the eikonal equation, the fast iterative method was modified and embedded into DREAM. Obtained activation times control transmembrane voltage courses in the RD model computing, while repolarization times are provided back to the eikonal model. For a planar wave-front in the center of a 2D patch, DREAM action potentials (APs) have a small overshoot in the upstroke compared to pure RD simulations (monodomain) but similar AP duration. DREAM conduction velocity does not increase near boundaries or stimulated areas as it occurs in RD. Anatomical reentry was reproduced with the S1-S2 protocol. This is the first time that an iterative method is used to solve the eikonal model in a version that admits reactivation. This method can facilitate uptake of computer models in clinical settings. Further improvements will allow to accurately represent even more complex patterns of arrhythmia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信