Romain Belmonte, Nacim Ihaddadene, Pierre Tirilly, Ioan Marius Bilasco, C. Djeraba
{"title":"基于视频的人脸对齐与局部运动建模","authors":"Romain Belmonte, Nacim Ihaddadene, Pierre Tirilly, Ioan Marius Bilasco, C. Djeraba","doi":"10.1109/WACV.2019.00228","DOIUrl":null,"url":null,"abstract":"Face alignment remains difficult under uncontrolled conditions due to the many variations that may considerably impact facial appearance. Recently, video-based approaches have been proposed, which take advantage of temporal coherence to improve robustness. These new approaches suffer from limited temporal connectivity. We show that early, direct pixel connectivity enables the detection of local motion patterns and the learning of a hierarchy of motion features. We integrate local motion to the two predominant models in the literature, coordinate regression networks and heatmap regression networks, and combine it with late connectivity based on recurrent neural networks. The experimental results on two datasets, 300VW and SNaP-2DFe, show that local motion improves video-based face alignment and is complementary to late temporal information. Despite the simplicity of the proposed architectures, our best model provides competitive performance with more complex models from the literature.","PeriodicalId":436637,"journal":{"name":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Video-Based Face Alignment With Local Motion Modeling\",\"authors\":\"Romain Belmonte, Nacim Ihaddadene, Pierre Tirilly, Ioan Marius Bilasco, C. Djeraba\",\"doi\":\"10.1109/WACV.2019.00228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face alignment remains difficult under uncontrolled conditions due to the many variations that may considerably impact facial appearance. Recently, video-based approaches have been proposed, which take advantage of temporal coherence to improve robustness. These new approaches suffer from limited temporal connectivity. We show that early, direct pixel connectivity enables the detection of local motion patterns and the learning of a hierarchy of motion features. We integrate local motion to the two predominant models in the literature, coordinate regression networks and heatmap regression networks, and combine it with late connectivity based on recurrent neural networks. The experimental results on two datasets, 300VW and SNaP-2DFe, show that local motion improves video-based face alignment and is complementary to late temporal information. Despite the simplicity of the proposed architectures, our best model provides competitive performance with more complex models from the literature.\",\"PeriodicalId\":436637,\"journal\":{\"name\":\"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2019.00228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2019.00228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Video-Based Face Alignment With Local Motion Modeling
Face alignment remains difficult under uncontrolled conditions due to the many variations that may considerably impact facial appearance. Recently, video-based approaches have been proposed, which take advantage of temporal coherence to improve robustness. These new approaches suffer from limited temporal connectivity. We show that early, direct pixel connectivity enables the detection of local motion patterns and the learning of a hierarchy of motion features. We integrate local motion to the two predominant models in the literature, coordinate regression networks and heatmap regression networks, and combine it with late connectivity based on recurrent neural networks. The experimental results on two datasets, 300VW and SNaP-2DFe, show that local motion improves video-based face alignment and is complementary to late temporal information. Despite the simplicity of the proposed architectures, our best model provides competitive performance with more complex models from the literature.