{"title":"水闸下非淹没水流试验与数值研究","authors":"A. Kiczko, J. Kubrak, E. Kubrak","doi":"10.1515/sggw-2015-0024","DOIUrl":null,"url":null,"abstract":"Abstract The problem of sluice gate flow is analyzed using two models: a simplified one, derived according to the concept of the Potential Field (PF), and a more complex form, based on the Reynolds Average Navier-Stokes (RANS) equations. The numerical solution is compared with experimental data, including measurements performed by authors and results acquired from literature. Despite its simplicity, the PF model provides a satisfactory agreement with the measurements. The slightly worse performance of the RANS model comes from an overestimation of energy losses.","PeriodicalId":169511,"journal":{"name":"Annals of Warsaw University of Life Sciences, Land Reclamation","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Experimental and numerical investigation of non-submerged flow under a sluice gate\",\"authors\":\"A. Kiczko, J. Kubrak, E. Kubrak\",\"doi\":\"10.1515/sggw-2015-0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The problem of sluice gate flow is analyzed using two models: a simplified one, derived according to the concept of the Potential Field (PF), and a more complex form, based on the Reynolds Average Navier-Stokes (RANS) equations. The numerical solution is compared with experimental data, including measurements performed by authors and results acquired from literature. Despite its simplicity, the PF model provides a satisfactory agreement with the measurements. The slightly worse performance of the RANS model comes from an overestimation of energy losses.\",\"PeriodicalId\":169511,\"journal\":{\"name\":\"Annals of Warsaw University of Life Sciences, Land Reclamation\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Warsaw University of Life Sciences, Land Reclamation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/sggw-2015-0024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Warsaw University of Life Sciences, Land Reclamation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/sggw-2015-0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental and numerical investigation of non-submerged flow under a sluice gate
Abstract The problem of sluice gate flow is analyzed using two models: a simplified one, derived according to the concept of the Potential Field (PF), and a more complex form, based on the Reynolds Average Navier-Stokes (RANS) equations. The numerical solution is compared with experimental data, including measurements performed by authors and results acquired from literature. Despite its simplicity, the PF model provides a satisfactory agreement with the measurements. The slightly worse performance of the RANS model comes from an overestimation of energy losses.