Rabia Rauf, A. R. Shahid, Sheikh Ziauddin, A. Safi
{"title":"以HOG、LUV和光流为特征,以AdaBoost为分类器进行行人检测","authors":"Rabia Rauf, A. R. Shahid, Sheikh Ziauddin, A. Safi","doi":"10.1109/IPTA.2016.7821024","DOIUrl":null,"url":null,"abstract":"Pedestrian detection has been used in applications such as car safety, video surveillance, and intelligent vehicles. In this paper, we present a pedestrian detection scheme using HOG, LUV and optical flow features with AdaBoost Decision Stump classifier. Our experiments on Caltech-USA pedestrian dataset show that the proposed scheme achieves promising results of about 16.7% log-average miss rate.","PeriodicalId":123429,"journal":{"name":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Pedestrian detection using HOG, LUV and optical flow as features with AdaBoost as classifier\",\"authors\":\"Rabia Rauf, A. R. Shahid, Sheikh Ziauddin, A. Safi\",\"doi\":\"10.1109/IPTA.2016.7821024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pedestrian detection has been used in applications such as car safety, video surveillance, and intelligent vehicles. In this paper, we present a pedestrian detection scheme using HOG, LUV and optical flow features with AdaBoost Decision Stump classifier. Our experiments on Caltech-USA pedestrian dataset show that the proposed scheme achieves promising results of about 16.7% log-average miss rate.\",\"PeriodicalId\":123429,\"journal\":{\"name\":\"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2016.7821024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2016.7821024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pedestrian detection using HOG, LUV and optical flow as features with AdaBoost as classifier
Pedestrian detection has been used in applications such as car safety, video surveillance, and intelligent vehicles. In this paper, we present a pedestrian detection scheme using HOG, LUV and optical flow features with AdaBoost Decision Stump classifier. Our experiments on Caltech-USA pedestrian dataset show that the proposed scheme achieves promising results of about 16.7% log-average miss rate.