以HOG、LUV和光流为特征,以AdaBoost为分类器进行行人检测

Rabia Rauf, A. R. Shahid, Sheikh Ziauddin, A. Safi
{"title":"以HOG、LUV和光流为特征,以AdaBoost为分类器进行行人检测","authors":"Rabia Rauf, A. R. Shahid, Sheikh Ziauddin, A. Safi","doi":"10.1109/IPTA.2016.7821024","DOIUrl":null,"url":null,"abstract":"Pedestrian detection has been used in applications such as car safety, video surveillance, and intelligent vehicles. In this paper, we present a pedestrian detection scheme using HOG, LUV and optical flow features with AdaBoost Decision Stump classifier. Our experiments on Caltech-USA pedestrian dataset show that the proposed scheme achieves promising results of about 16.7% log-average miss rate.","PeriodicalId":123429,"journal":{"name":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Pedestrian detection using HOG, LUV and optical flow as features with AdaBoost as classifier\",\"authors\":\"Rabia Rauf, A. R. Shahid, Sheikh Ziauddin, A. Safi\",\"doi\":\"10.1109/IPTA.2016.7821024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pedestrian detection has been used in applications such as car safety, video surveillance, and intelligent vehicles. In this paper, we present a pedestrian detection scheme using HOG, LUV and optical flow features with AdaBoost Decision Stump classifier. Our experiments on Caltech-USA pedestrian dataset show that the proposed scheme achieves promising results of about 16.7% log-average miss rate.\",\"PeriodicalId\":123429,\"journal\":{\"name\":\"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2016.7821024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2016.7821024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

行人检测已被用于汽车安全、视频监控和智能车辆等应用。本文提出了一种基于HOG、LUV和光流特征和AdaBoost Decision Stump分类器的行人检测方案。我们在Caltech-USA行人数据集上的实验表明,该方法取得了令人满意的结果,对数平均缺失率约为16.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pedestrian detection using HOG, LUV and optical flow as features with AdaBoost as classifier
Pedestrian detection has been used in applications such as car safety, video surveillance, and intelligent vehicles. In this paper, we present a pedestrian detection scheme using HOG, LUV and optical flow features with AdaBoost Decision Stump classifier. Our experiments on Caltech-USA pedestrian dataset show that the proposed scheme achieves promising results of about 16.7% log-average miss rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信