{"title":"基于从移动电话获得的需求估计的稳健的交通线路规划","authors":"Chungmok Lee , Rahul Nair","doi":"10.1016/j.ejtl.2021.100034","DOIUrl":null,"url":null,"abstract":"<div><p>The line-planning problem seeks to determine the set of fixed routes (or lines) a transit operator should run, along with associated operation frequencies. We propose an optimization algorithm for the transit-line-planning problem based on bi-level programming that exploits the problem’s structure in conjunction with the range estimation of demands. The issue of conservativeness due to the range estimation is mitigated by adopting the robust optimization approach. The model was inspired by a real-world application that leverages big data available from telecommunications operators to estimate city-wide mobility patterns. Demand estimates from such sources are based on large sample sizes (often orders of magnitude larger than those used in survey-based approaches), and capture day-to-day variability in travel demand as ranges. The validity of the proposed algorithm is demonstrated by using real-world data derived from 2.5 billion call data records from Abidjan, Côte d’Ivoire.</p></div>","PeriodicalId":45871,"journal":{"name":"EURO Journal on Transportation and Logistics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ejtl.2021.100034","citationCount":"7","resultStr":"{\"title\":\"Robust transit line planning based on demand estimates obtained from mobile phones\",\"authors\":\"Chungmok Lee , Rahul Nair\",\"doi\":\"10.1016/j.ejtl.2021.100034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The line-planning problem seeks to determine the set of fixed routes (or lines) a transit operator should run, along with associated operation frequencies. We propose an optimization algorithm for the transit-line-planning problem based on bi-level programming that exploits the problem’s structure in conjunction with the range estimation of demands. The issue of conservativeness due to the range estimation is mitigated by adopting the robust optimization approach. The model was inspired by a real-world application that leverages big data available from telecommunications operators to estimate city-wide mobility patterns. Demand estimates from such sources are based on large sample sizes (often orders of magnitude larger than those used in survey-based approaches), and capture day-to-day variability in travel demand as ranges. The validity of the proposed algorithm is demonstrated by using real-world data derived from 2.5 billion call data records from Abidjan, Côte d’Ivoire.</p></div>\",\"PeriodicalId\":45871,\"journal\":{\"name\":\"EURO Journal on Transportation and Logistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ejtl.2021.100034\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Transportation and Logistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2192437621000066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Transportation and Logistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192437621000066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Robust transit line planning based on demand estimates obtained from mobile phones
The line-planning problem seeks to determine the set of fixed routes (or lines) a transit operator should run, along with associated operation frequencies. We propose an optimization algorithm for the transit-line-planning problem based on bi-level programming that exploits the problem’s structure in conjunction with the range estimation of demands. The issue of conservativeness due to the range estimation is mitigated by adopting the robust optimization approach. The model was inspired by a real-world application that leverages big data available from telecommunications operators to estimate city-wide mobility patterns. Demand estimates from such sources are based on large sample sizes (often orders of magnitude larger than those used in survey-based approaches), and capture day-to-day variability in travel demand as ranges. The validity of the proposed algorithm is demonstrated by using real-world data derived from 2.5 billion call data records from Abidjan, Côte d’Ivoire.
期刊介绍:
The EURO Journal on Transportation and Logistics promotes the use of mathematics in general, and operations research in particular, in the context of transportation and logistics. It is a forum for the presentation of original mathematical models, methodologies and computational results, focussing on advanced applications in transportation and logistics. The journal publishes two types of document: (i) research articles and (ii) tutorials. A research article presents original methodological contributions to the field (e.g. new mathematical models, new algorithms, new simulation techniques). A tutorial provides an introduction to an advanced topic, designed to ease the use of the relevant methodology by researchers and practitioners.