SVLDL:使用选择性方差标签分布学习改进说话人年龄估计

Zuheng Kang, Jianzong Wang, Junqing Peng, Jing Xiao
{"title":"SVLDL:使用选择性方差标签分布学习改进说话人年龄估计","authors":"Zuheng Kang, Jianzong Wang, Junqing Peng, Jing Xiao","doi":"10.1109/SLT54892.2023.10023124","DOIUrl":null,"url":null,"abstract":"Estimating age from a single speech is a classic and challenging topic. Although Label Distribution Learning (LDL) can represent adjacent indistinguishable ages well, the uncertainty of the age estimate for each utterance varies from person to person, i.e., the variance of the age distribution is different. To address this issue, we propose selective variance label distribution learning (SVLDL) method to adapt the variance of different age distributions. Furthermore, the model uses WavLM as the speech feature extractor and adds the auxiliary task of gender recognition to further improve the performance. Two tricks are applied on the loss function to enhance the robustness of the age estimation and improve the quality of the fitted age distribution. Extensive experiments show that the model achieves state-of-the-art performance on all aspects of the NIST SRE08-10 and a real-world datasets.","PeriodicalId":352002,"journal":{"name":"2022 IEEE Spoken Language Technology Workshop (SLT)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SVLDL: Improved Speaker Age Estimation Using Selective Variance Label Distribution Learning\",\"authors\":\"Zuheng Kang, Jianzong Wang, Junqing Peng, Jing Xiao\",\"doi\":\"10.1109/SLT54892.2023.10023124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating age from a single speech is a classic and challenging topic. Although Label Distribution Learning (LDL) can represent adjacent indistinguishable ages well, the uncertainty of the age estimate for each utterance varies from person to person, i.e., the variance of the age distribution is different. To address this issue, we propose selective variance label distribution learning (SVLDL) method to adapt the variance of different age distributions. Furthermore, the model uses WavLM as the speech feature extractor and adds the auxiliary task of gender recognition to further improve the performance. Two tricks are applied on the loss function to enhance the robustness of the age estimation and improve the quality of the fitted age distribution. Extensive experiments show that the model achieves state-of-the-art performance on all aspects of the NIST SRE08-10 and a real-world datasets.\",\"PeriodicalId\":352002,\"journal\":{\"name\":\"2022 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT54892.2023.10023124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT54892.2023.10023124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

从一次演讲中估计年龄是一个经典而富有挑战性的话题。尽管标签分布学习(LDL)可以很好地表示相邻的不可区分的年龄,但每个话语的年龄估计的不确定性因人而异,即年龄分布的方差是不同的。为了解决这个问题,我们提出了选择性方差标签分布学习(SVLDL)方法来适应不同年龄分布的方差。此外,该模型采用WavLM作为语音特征提取器,并增加了性别识别的辅助任务,进一步提高了性能。在损失函数上应用了两种技巧来增强年龄估计的鲁棒性,提高年龄分布的拟合质量。大量的实验表明,该模型在NIST SRE08-10和真实世界数据集的各个方面都达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SVLDL: Improved Speaker Age Estimation Using Selective Variance Label Distribution Learning
Estimating age from a single speech is a classic and challenging topic. Although Label Distribution Learning (LDL) can represent adjacent indistinguishable ages well, the uncertainty of the age estimate for each utterance varies from person to person, i.e., the variance of the age distribution is different. To address this issue, we propose selective variance label distribution learning (SVLDL) method to adapt the variance of different age distributions. Furthermore, the model uses WavLM as the speech feature extractor and adds the auxiliary task of gender recognition to further improve the performance. Two tricks are applied on the loss function to enhance the robustness of the age estimation and improve the quality of the fitted age distribution. Extensive experiments show that the model achieves state-of-the-art performance on all aspects of the NIST SRE08-10 and a real-world datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信