使用机器学习方法快速估计co2 -盐水界面张力:比较研究

Jiyuan Zhang, Q. Feng, Xianmin Zhang
{"title":"使用机器学习方法快速估计co2 -盐水界面张力:比较研究","authors":"Jiyuan Zhang, Q. Feng, Xianmin Zhang","doi":"10.1145/3409073.3409095","DOIUrl":null,"url":null,"abstract":"The CO2-brine interfacial tension (IFT) is key to designing the CO2 injection into underground saline aquifers in order to reduce CO2 and slow global temperature increase. Laboratory measurement of CO2-brine IFT is usually time-consuming and requires an expensive experimental apparatus and sophisticated interpretation procedures. This paper presents comprehensive comparisons of nine state-of-the-art machine learning methods for fast estimation of CO2-brine IFT. Results show that: i) the extreme gradient boosting (XGBoost) and gradient boosting decision tree (GBDT) exhibit the strongest robustness and generalization capability, which can be applied for accurate and fast estimation of CO2-brine IFT in practice; ii) the Gaussian process regression (GPR) is associated with the issue of overfitting and therefore may not be reliable for further application; and iii) the other six methods (support vector machine, multi-player perception, kernel ridge regression, classifier and regression tree, random forest, Adaboost) have comparable accuracies in predicting the \"unseen\" data although noticeable variations in the correlation accuracies are observed for different methods in the training stage.","PeriodicalId":229746,"journal":{"name":"Proceedings of the 2020 5th International Conference on Machine Learning Technologies","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The use of machine learning methods for fast estimation of CO2-brine interfacial tension: A comparative study\",\"authors\":\"Jiyuan Zhang, Q. Feng, Xianmin Zhang\",\"doi\":\"10.1145/3409073.3409095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The CO2-brine interfacial tension (IFT) is key to designing the CO2 injection into underground saline aquifers in order to reduce CO2 and slow global temperature increase. Laboratory measurement of CO2-brine IFT is usually time-consuming and requires an expensive experimental apparatus and sophisticated interpretation procedures. This paper presents comprehensive comparisons of nine state-of-the-art machine learning methods for fast estimation of CO2-brine IFT. Results show that: i) the extreme gradient boosting (XGBoost) and gradient boosting decision tree (GBDT) exhibit the strongest robustness and generalization capability, which can be applied for accurate and fast estimation of CO2-brine IFT in practice; ii) the Gaussian process regression (GPR) is associated with the issue of overfitting and therefore may not be reliable for further application; and iii) the other six methods (support vector machine, multi-player perception, kernel ridge regression, classifier and regression tree, random forest, Adaboost) have comparable accuracies in predicting the \\\"unseen\\\" data although noticeable variations in the correlation accuracies are observed for different methods in the training stage.\",\"PeriodicalId\":229746,\"journal\":{\"name\":\"Proceedings of the 2020 5th International Conference on Machine Learning Technologies\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 5th International Conference on Machine Learning Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3409073.3409095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 5th International Conference on Machine Learning Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3409073.3409095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

CO2-盐水界面张力(IFT)是设计地下咸水层CO2注入以减少CO2和减缓全球温度升高的关键。co2 -盐水IFT的实验室测量通常很耗时,需要昂贵的实验仪器和复杂的解释程序。本文介绍了用于快速估计co2盐水IFT的九种最先进的机器学习方法的全面比较。结果表明:①极端梯度增强(XGBoost)和梯度增强决策树(GBDT)具有最强的鲁棒性和泛化能力,可用于实际中准确、快速地估计co2 -盐水IFT;ii)高斯过程回归(GPR)与过拟合问题有关,因此在进一步应用时可能不可靠;iii)其他六种方法(支持向量机、多人感知、核岭回归、分类器和回归树、随机森林、Adaboost)在预测“看不见的”数据方面具有相当的准确性,尽管在训练阶段观察到不同方法的相关准确性存在明显差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The use of machine learning methods for fast estimation of CO2-brine interfacial tension: A comparative study
The CO2-brine interfacial tension (IFT) is key to designing the CO2 injection into underground saline aquifers in order to reduce CO2 and slow global temperature increase. Laboratory measurement of CO2-brine IFT is usually time-consuming and requires an expensive experimental apparatus and sophisticated interpretation procedures. This paper presents comprehensive comparisons of nine state-of-the-art machine learning methods for fast estimation of CO2-brine IFT. Results show that: i) the extreme gradient boosting (XGBoost) and gradient boosting decision tree (GBDT) exhibit the strongest robustness and generalization capability, which can be applied for accurate and fast estimation of CO2-brine IFT in practice; ii) the Gaussian process regression (GPR) is associated with the issue of overfitting and therefore may not be reliable for further application; and iii) the other six methods (support vector machine, multi-player perception, kernel ridge regression, classifier and regression tree, random forest, Adaboost) have comparable accuracies in predicting the "unseen" data although noticeable variations in the correlation accuracies are observed for different methods in the training stage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信