{"title":"SENTIMEN ANALISIS CHATGPT DENGAN ALGORITMA NAÏVE BAYES DAN OPTIMASI PSO","authors":"Lestari Yusuf, Siti Masripah","doi":"10.33480/inti.v18i1.4230","DOIUrl":null,"url":null,"abstract":"Abstract— ChatGPT which is an OpenAI technology that responds to conversations between humans and machines. enabling users of all ages and backgrounds to communicate naturally in multiple languages without having prior knowledge or experience in programming or the computer world. However, a technology will always be at odds and has flaws on the human side, various assumptions about chatGPT are formed from many sides, such as in the world of education, chatGPT creates parallels for teachers and lecturers. When giving assignments, students/students can use chatGPT as material in answering assignments from teachers/lecturers. And that results in students/students not carefully reading the answers to these assignments, if that continues to happen, students/students will find it too easy to get something and then will lose interest in solving problems with their own efforts. This article aims to analyze sentiment analysis whose data is taken from Twitter using the keyword \"CahtGPT OpenAI\". With 2,000 data calculated using the naive Bayes algorithm and optimized using PSO, it is found that sentiment analysis for chatGPT itself has an accuracy of 69.23% with a positive class of 0.503 and a negative of 0.497 and obtains an AUC curve value of 0.68 +/- 0.55..","PeriodicalId":197142,"journal":{"name":"INTI Nusa Mandiri","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTI Nusa Mandiri","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33480/inti.v18i1.4230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SENTIMEN ANALISIS CHATGPT DENGAN ALGORITMA NAÏVE BAYES DAN OPTIMASI PSO
Abstract— ChatGPT which is an OpenAI technology that responds to conversations between humans and machines. enabling users of all ages and backgrounds to communicate naturally in multiple languages without having prior knowledge or experience in programming or the computer world. However, a technology will always be at odds and has flaws on the human side, various assumptions about chatGPT are formed from many sides, such as in the world of education, chatGPT creates parallels for teachers and lecturers. When giving assignments, students/students can use chatGPT as material in answering assignments from teachers/lecturers. And that results in students/students not carefully reading the answers to these assignments, if that continues to happen, students/students will find it too easy to get something and then will lose interest in solving problems with their own efforts. This article aims to analyze sentiment analysis whose data is taken from Twitter using the keyword "CahtGPT OpenAI". With 2,000 data calculated using the naive Bayes algorithm and optimized using PSO, it is found that sentiment analysis for chatGPT itself has an accuracy of 69.23% with a positive class of 0.503 and a negative of 0.497 and obtains an AUC curve value of 0.68 +/- 0.55..