使用随机森林的密集非刚性形状对应

E. Rodolà, S. R. Bulò, Thomas Windheuser, Matthias Vestner, D. Cremers
{"title":"使用随机森林的密集非刚性形状对应","authors":"E. Rodolà, S. R. Bulò, Thomas Windheuser, Matthias Vestner, D. Cremers","doi":"10.1109/CVPR.2014.532","DOIUrl":null,"url":null,"abstract":"We propose a shape matching method that produces dense correspondences tuned to a specific class of shapes and deformations. In a scenario where this class is represented by a small set of example shapes, the proposed method learns a shape descriptor capturing the variability of the deformations in the given class. The approach enables the wave kernel signature to extend the class of recognized deformations from near isometries to the deformations appearing in the example set by means of a random forest classifier. With the help of the introduced spatial regularization, the proposed method achieves significant improvements over the baseline approach and obtains state-of-the-art results while keeping short computation times.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"167","resultStr":"{\"title\":\"Dense Non-rigid Shape Correspondence Using Random Forests\",\"authors\":\"E. Rodolà, S. R. Bulò, Thomas Windheuser, Matthias Vestner, D. Cremers\",\"doi\":\"10.1109/CVPR.2014.532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a shape matching method that produces dense correspondences tuned to a specific class of shapes and deformations. In a scenario where this class is represented by a small set of example shapes, the proposed method learns a shape descriptor capturing the variability of the deformations in the given class. The approach enables the wave kernel signature to extend the class of recognized deformations from near isometries to the deformations appearing in the example set by means of a random forest classifier. With the help of the introduced spatial regularization, the proposed method achieves significant improvements over the baseline approach and obtains state-of-the-art results while keeping short computation times.\",\"PeriodicalId\":319578,\"journal\":{\"name\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"167\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2014.532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 167

摘要

我们提出了一种形状匹配方法,该方法可以产生针对特定类型形状和变形的密集对应。在该类由一小组示例形状表示的场景中,所提出的方法学习捕获给定类中变形的可变性的形状描述符。该方法使波核签名能够将识别变形的类别从近等距扩展到通过随机森林分类器出现在示例集中的变形。在引入空间正则化的帮助下,该方法在保持较短的计算时间的同时取得了较好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dense Non-rigid Shape Correspondence Using Random Forests
We propose a shape matching method that produces dense correspondences tuned to a specific class of shapes and deformations. In a scenario where this class is represented by a small set of example shapes, the proposed method learns a shape descriptor capturing the variability of the deformations in the given class. The approach enables the wave kernel signature to extend the class of recognized deformations from near isometries to the deformations appearing in the example set by means of a random forest classifier. With the help of the introduced spatial regularization, the proposed method achieves significant improvements over the baseline approach and obtains state-of-the-art results while keeping short computation times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信