E. Rodolà, S. R. Bulò, Thomas Windheuser, Matthias Vestner, D. Cremers
{"title":"使用随机森林的密集非刚性形状对应","authors":"E. Rodolà, S. R. Bulò, Thomas Windheuser, Matthias Vestner, D. Cremers","doi":"10.1109/CVPR.2014.532","DOIUrl":null,"url":null,"abstract":"We propose a shape matching method that produces dense correspondences tuned to a specific class of shapes and deformations. In a scenario where this class is represented by a small set of example shapes, the proposed method learns a shape descriptor capturing the variability of the deformations in the given class. The approach enables the wave kernel signature to extend the class of recognized deformations from near isometries to the deformations appearing in the example set by means of a random forest classifier. With the help of the introduced spatial regularization, the proposed method achieves significant improvements over the baseline approach and obtains state-of-the-art results while keeping short computation times.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"167","resultStr":"{\"title\":\"Dense Non-rigid Shape Correspondence Using Random Forests\",\"authors\":\"E. Rodolà, S. R. Bulò, Thomas Windheuser, Matthias Vestner, D. Cremers\",\"doi\":\"10.1109/CVPR.2014.532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a shape matching method that produces dense correspondences tuned to a specific class of shapes and deformations. In a scenario where this class is represented by a small set of example shapes, the proposed method learns a shape descriptor capturing the variability of the deformations in the given class. The approach enables the wave kernel signature to extend the class of recognized deformations from near isometries to the deformations appearing in the example set by means of a random forest classifier. With the help of the introduced spatial regularization, the proposed method achieves significant improvements over the baseline approach and obtains state-of-the-art results while keeping short computation times.\",\"PeriodicalId\":319578,\"journal\":{\"name\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"167\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2014.532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dense Non-rigid Shape Correspondence Using Random Forests
We propose a shape matching method that produces dense correspondences tuned to a specific class of shapes and deformations. In a scenario where this class is represented by a small set of example shapes, the proposed method learns a shape descriptor capturing the variability of the deformations in the given class. The approach enables the wave kernel signature to extend the class of recognized deformations from near isometries to the deformations appearing in the example set by means of a random forest classifier. With the help of the introduced spatial regularization, the proposed method achieves significant improvements over the baseline approach and obtains state-of-the-art results while keeping short computation times.