基于人工神经网络(ANN)和随机样本一致性(RANSAC)的稳健针识别

Jaewon Chang
{"title":"基于人工神经网络(ANN)和随机样本一致性(RANSAC)的稳健针识别","authors":"Jaewon Chang","doi":"10.1109/AIPR.2012.6528219","DOIUrl":null,"url":null,"abstract":"In this paper, we suggest an algorithm for a half-circle-like surgical needle recognition in stereo image. The recognition starts from segmentation of needle in both stereo images using Artificial Neural Network (ANN). Next, the points in the segments are being matched to each other stereo image through intensity based matching, and then re-projected to 3D space which will be fitted to 3D circle. Finally, estimate the circle of the needle using RANdom SAmple Consensus (RANSAC) and known specification of the needle.","PeriodicalId":406942,"journal":{"name":"2012 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust needle recognition using Artificial Neural Network (ANN) and Random Sample Consensus (RANSAC)\",\"authors\":\"Jaewon Chang\",\"doi\":\"10.1109/AIPR.2012.6528219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we suggest an algorithm for a half-circle-like surgical needle recognition in stereo image. The recognition starts from segmentation of needle in both stereo images using Artificial Neural Network (ANN). Next, the points in the segments are being matched to each other stereo image through intensity based matching, and then re-projected to 3D space which will be fitted to 3D circle. Finally, estimate the circle of the needle using RANdom SAmple Consensus (RANSAC) and known specification of the needle.\",\"PeriodicalId\":406942,\"journal\":{\"name\":\"2012 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2012.6528219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2012.6528219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一种在立体图像中识别半圆型手术针的算法。利用人工神经网络(ANN)从两幅立体图像的针尖分割开始进行识别。然后,通过基于强度的匹配,将片段中的点与彼此的立体图像进行匹配,然后将其重新投影到三维空间中,并将其拟合到三维圆中。最后,使用随机样本共识(RANSAC)和已知的针头规格来估计针头的圆周。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust needle recognition using Artificial Neural Network (ANN) and Random Sample Consensus (RANSAC)
In this paper, we suggest an algorithm for a half-circle-like surgical needle recognition in stereo image. The recognition starts from segmentation of needle in both stereo images using Artificial Neural Network (ANN). Next, the points in the segments are being matched to each other stereo image through intensity based matching, and then re-projected to 3D space which will be fitted to 3D circle. Finally, estimate the circle of the needle using RANdom SAmple Consensus (RANSAC) and known specification of the needle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信