Banaschewski抛射定理的另一个证明

D. Baboolal, J. Picado, A. Pultr
{"title":"Banaschewski抛射定理的另一个证明","authors":"D. Baboolal, J. Picado, A. Pultr","doi":"10.29252/CGASA.11.1.113","DOIUrl":null,"url":null,"abstract":"We present a new proof of Banaschewski's theorem stating that the completion lift of a uniform surjection is a surjection. The new procedure allows to extend the fact (and, similarly, the related theorem on closed uniform sublocales of complete uniform frames) to quasi-uniformities (\"not necessarily symmetric uniformities\"). Further, we show how a (regular) Cauchy point on a closed uniform sublocale can be extended to a (regular) Cauchy point on the larger (quasi-)uniform frame.","PeriodicalId":170235,"journal":{"name":"Categories and General Algebraic Structures with Application","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Another proof of Banaschewski's surjection theorem\",\"authors\":\"D. Baboolal, J. Picado, A. Pultr\",\"doi\":\"10.29252/CGASA.11.1.113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new proof of Banaschewski's theorem stating that the completion lift of a uniform surjection is a surjection. The new procedure allows to extend the fact (and, similarly, the related theorem on closed uniform sublocales of complete uniform frames) to quasi-uniformities (\\\"not necessarily symmetric uniformities\\\"). Further, we show how a (regular) Cauchy point on a closed uniform sublocale can be extended to a (regular) Cauchy point on the larger (quasi-)uniform frame.\",\"PeriodicalId\":170235,\"journal\":{\"name\":\"Categories and General Algebraic Structures with Application\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Categories and General Algebraic Structures with Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29252/CGASA.11.1.113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Categories and General Algebraic Structures with Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/CGASA.11.1.113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给出了Banaschewski定理的一个新的证明,证明了一致抛射的完备升力是抛射。新的过程允许将事实(以及类似地,关于完全一致框架的闭一致子区域的相关定理)推广到拟均匀性(“不一定是对称均匀性”)。进一步,我们展示了如何将封闭一致子区域上的(正则)柯西点扩展到更大的(拟)一致框架上的(正则)柯西点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Another proof of Banaschewski's surjection theorem
We present a new proof of Banaschewski's theorem stating that the completion lift of a uniform surjection is a surjection. The new procedure allows to extend the fact (and, similarly, the related theorem on closed uniform sublocales of complete uniform frames) to quasi-uniformities ("not necessarily symmetric uniformities"). Further, we show how a (regular) Cauchy point on a closed uniform sublocale can be extended to a (regular) Cauchy point on the larger (quasi-)uniform frame.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信