用支出信息充实收入数据:一种半参数归算技术

A. Decoster, Kris De Swerdt
{"title":"用支出信息充实收入数据:一种半参数归算技术","authors":"A. Decoster, Kris De Swerdt","doi":"10.2139/ssrn.1130787","DOIUrl":null,"url":null,"abstract":"In this paper we describe a methodology for enriching an income dataset with information on expenditures using a semi-parametric imputation technique. Engel curves are first estimated semi-parametrically on household budget data. We then show how the technique can be used to impute expenditure information into a separate income dataset. As an example we show results from the imputation of expenditures in a separate income file using Belgian household budget data.","PeriodicalId":384078,"journal":{"name":"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)","volume":"474 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enriching Income Data with Expenditure Information: A Semi-Parametric Imputation Technique\",\"authors\":\"A. Decoster, Kris De Swerdt\",\"doi\":\"10.2139/ssrn.1130787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe a methodology for enriching an income dataset with information on expenditures using a semi-parametric imputation technique. Engel curves are first estimated semi-parametrically on household budget data. We then show how the technique can be used to impute expenditure information into a separate income dataset. As an example we show results from the imputation of expenditures in a separate income file using Belgian household budget data.\",\"PeriodicalId\":384078,\"journal\":{\"name\":\"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)\",\"volume\":\"474 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1130787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1130787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们描述了一种方法,用于丰富收入数据集与信息的支出使用半参数推算技术。恩格尔曲线首先在家庭预算数据上进行半参数估计。然后,我们展示了如何使用该技术将支出信息推算到一个单独的收入数据集中。作为一个例子,我们展示了使用比利时家庭预算数据在一个单独的收入文件中计算支出的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enriching Income Data with Expenditure Information: A Semi-Parametric Imputation Technique
In this paper we describe a methodology for enriching an income dataset with information on expenditures using a semi-parametric imputation technique. Engel curves are first estimated semi-parametrically on household budget data. We then show how the technique can be used to impute expenditure information into a separate income dataset. As an example we show results from the imputation of expenditures in a separate income file using Belgian household budget data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信