{"title":"启发式搜索和信息论在顺序故障诊断中的应用","authors":"K. Pattipati, M. G. Alexandridis","doi":"10.1109/ISIC.1988.65446","DOIUrl":null,"url":null,"abstract":"The problem of constructing optimal and near-optimal test sequences to diagnose permanent faults in electronic and electromechanical systems is considered. The test sequencing problem is formulated as an optimal binary AND/OR decision tree construction problem, whose solution is known to be NP-complete. The approach is based on integrating concepts from information theory and heuristic AND/OR graph search methods to subdue the computational explosion of the optimal test sequencing problem. Lower bounds on the optimal cost-to-go are derived from the information-theoretic concepts of Huffman coding and entropy, which ensure that an optimal solution is found using the heuristic AND/OR graph search algorithms. This makes it possible to obtain optimal test sequences to problems that are intractable with the traditional dynamic programming techniques. In addition, a class of test sequencing algorithms that provide a tradeoff between optimality and complexity have been derived using the epsilon -optimal and limited search strategies. The effectiveness of the algorithms is demonstrated on several test cases. As a by-product, this approach to test sequencing can be adapted to solve a wide variety of binary identification problems arising in other fields.<<ETX>>","PeriodicalId":155616,"journal":{"name":"Proceedings IEEE International Symposium on Intelligent Control 1988","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"270","resultStr":"{\"title\":\"Application of heuristic search and information theory to sequential fault diagnosis\",\"authors\":\"K. Pattipati, M. G. Alexandridis\",\"doi\":\"10.1109/ISIC.1988.65446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of constructing optimal and near-optimal test sequences to diagnose permanent faults in electronic and electromechanical systems is considered. The test sequencing problem is formulated as an optimal binary AND/OR decision tree construction problem, whose solution is known to be NP-complete. The approach is based on integrating concepts from information theory and heuristic AND/OR graph search methods to subdue the computational explosion of the optimal test sequencing problem. Lower bounds on the optimal cost-to-go are derived from the information-theoretic concepts of Huffman coding and entropy, which ensure that an optimal solution is found using the heuristic AND/OR graph search algorithms. This makes it possible to obtain optimal test sequences to problems that are intractable with the traditional dynamic programming techniques. In addition, a class of test sequencing algorithms that provide a tradeoff between optimality and complexity have been derived using the epsilon -optimal and limited search strategies. The effectiveness of the algorithms is demonstrated on several test cases. As a by-product, this approach to test sequencing can be adapted to solve a wide variety of binary identification problems arising in other fields.<<ETX>>\",\"PeriodicalId\":155616,\"journal\":{\"name\":\"Proceedings IEEE International Symposium on Intelligent Control 1988\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"270\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE International Symposium on Intelligent Control 1988\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.1988.65446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Symposium on Intelligent Control 1988","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1988.65446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of heuristic search and information theory to sequential fault diagnosis
The problem of constructing optimal and near-optimal test sequences to diagnose permanent faults in electronic and electromechanical systems is considered. The test sequencing problem is formulated as an optimal binary AND/OR decision tree construction problem, whose solution is known to be NP-complete. The approach is based on integrating concepts from information theory and heuristic AND/OR graph search methods to subdue the computational explosion of the optimal test sequencing problem. Lower bounds on the optimal cost-to-go are derived from the information-theoretic concepts of Huffman coding and entropy, which ensure that an optimal solution is found using the heuristic AND/OR graph search algorithms. This makes it possible to obtain optimal test sequences to problems that are intractable with the traditional dynamic programming techniques. In addition, a class of test sequencing algorithms that provide a tradeoff between optimality and complexity have been derived using the epsilon -optimal and limited search strategies. The effectiveness of the algorithms is demonstrated on several test cases. As a by-product, this approach to test sequencing can be adapted to solve a wide variety of binary identification problems arising in other fields.<>