基于激光雷达驱动滑动窗口和相关部件检测的行人检测

Luciano Oliveira, U. Nunes
{"title":"基于激光雷达驱动滑动窗口和相关部件检测的行人检测","authors":"Luciano Oliveira, U. Nunes","doi":"10.1109/IVS.2013.6629490","DOIUrl":null,"url":null,"abstract":"The most standard image object detectors are usually comprised of one or multiple feature extractors or classifiers within a sliding window framework. Nevertheless, this type of approach has demonstrated a very limited performance under datasets of cluttered scenes and real life situations. To tackle these issues, LIDAR space is exploited here in order to detect 2D objects in 3D space, avoiding all the inherent problems of regular sliding window techniques. Additionally, we propose a relational parts-based pedestrian detection in a probabilistic non-iid framework. With the proposed framework, we have achieved state-of-the-art performance in a pedestrian dataset gathered in a challenging urban scenario. The proposed system demonstrated superior performance in comparison with pure sliding-window-based image detectors.","PeriodicalId":251198,"journal":{"name":"2013 IEEE Intelligent Vehicles Symposium (IV)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Pedestrian detection based on LIDAR-driven sliding window and relational parts-based detection\",\"authors\":\"Luciano Oliveira, U. Nunes\",\"doi\":\"10.1109/IVS.2013.6629490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most standard image object detectors are usually comprised of one or multiple feature extractors or classifiers within a sliding window framework. Nevertheless, this type of approach has demonstrated a very limited performance under datasets of cluttered scenes and real life situations. To tackle these issues, LIDAR space is exploited here in order to detect 2D objects in 3D space, avoiding all the inherent problems of regular sliding window techniques. Additionally, we propose a relational parts-based pedestrian detection in a probabilistic non-iid framework. With the proposed framework, we have achieved state-of-the-art performance in a pedestrian dataset gathered in a challenging urban scenario. The proposed system demonstrated superior performance in comparison with pure sliding-window-based image detectors.\",\"PeriodicalId\":251198,\"journal\":{\"name\":\"2013 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2013.6629490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2013.6629490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

最标准的图像目标检测器通常由滑动窗口框架内的一个或多个特征提取器或分类器组成。然而,这种方法在混乱场景和现实生活场景的数据集下表现出非常有限的性能。为了解决这些问题,这里利用激光雷达空间来检测3D空间中的2D物体,避免了常规滑动窗口技术的所有固有问题。此外,我们提出了一种基于关系部分的概率非id框架行人检测方法。通过提出的框架,我们在具有挑战性的城市场景中收集的行人数据集中实现了最先进的性能。与纯滑动窗图像检测器相比,该系统表现出了优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pedestrian detection based on LIDAR-driven sliding window and relational parts-based detection
The most standard image object detectors are usually comprised of one or multiple feature extractors or classifiers within a sliding window framework. Nevertheless, this type of approach has demonstrated a very limited performance under datasets of cluttered scenes and real life situations. To tackle these issues, LIDAR space is exploited here in order to detect 2D objects in 3D space, avoiding all the inherent problems of regular sliding window techniques. Additionally, we propose a relational parts-based pedestrian detection in a probabilistic non-iid framework. With the proposed framework, we have achieved state-of-the-art performance in a pedestrian dataset gathered in a challenging urban scenario. The proposed system demonstrated superior performance in comparison with pure sliding-window-based image detectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信