关于一般二元多项式结式的计算

G. Villard
{"title":"关于一般二元多项式结式的计算","authors":"G. Villard","doi":"10.1145/3208976.3209020","DOIUrl":null,"url":null,"abstract":"An algorithm is presented for computing the resultant of two generic bivariate polynomials over a field K. For such p and q K[x,y] both of degree d in x and n in y , the algorithm computes the resultant with respect to y using (n2 - 1/ømega d) 1+o(1) arithmetic operations in K, where two n x n matrices are multiplied using O(nømega) operations. Previous algorithms required time (n2 d) 1+o(1). The resultant is the determinant of the Sylvester matrix S(x) of p and q , which is an n x n Toeplitz-like polynomial matrix of degree~ d . We use a blocking technique and exploit the structure of S(x) for reducing the determinant computation to the computation of a matrix fraction description R(x)Q(x)-1 of an m x m submatrix of the inverse S(x)-1, where młl n. We rely on fast algorithms for handling dense polynomial matrices: the fraction description is obtained from an x -adic expansion via matrix fraction reconstruction, and the resultant as the determinant of the denominator matrix. We also describe some extensions of the approach to the computation of generic Gröbner bases and of characteristic polynomials of generic structured matrices and in univariate quotient algebras.","PeriodicalId":105762,"journal":{"name":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"On Computing the Resultant of Generic Bivariate Polynomials\",\"authors\":\"G. Villard\",\"doi\":\"10.1145/3208976.3209020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm is presented for computing the resultant of two generic bivariate polynomials over a field K. For such p and q K[x,y] both of degree d in x and n in y , the algorithm computes the resultant with respect to y using (n2 - 1/ømega d) 1+o(1) arithmetic operations in K, where two n x n matrices are multiplied using O(nømega) operations. Previous algorithms required time (n2 d) 1+o(1). The resultant is the determinant of the Sylvester matrix S(x) of p and q , which is an n x n Toeplitz-like polynomial matrix of degree~ d . We use a blocking technique and exploit the structure of S(x) for reducing the determinant computation to the computation of a matrix fraction description R(x)Q(x)-1 of an m x m submatrix of the inverse S(x)-1, where młl n. We rely on fast algorithms for handling dense polynomial matrices: the fraction description is obtained from an x -adic expansion via matrix fraction reconstruction, and the resultant as the determinant of the denominator matrix. We also describe some extensions of the approach to the computation of generic Gröbner bases and of characteristic polynomials of generic structured matrices and in univariate quotient algebras.\",\"PeriodicalId\":105762,\"journal\":{\"name\":\"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3208976.3209020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208976.3209020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

给出了一种计算域K上两个一般二元多项式的结式的算法。对于这样的p和q K[x,y]在x中都是d次,在y中都是n次,该算法在K中使用(n2 - 1/ømega d) 1+o(1)个算术运算来计算关于y的结式,其中两个n x n矩阵使用o(nømega)运算相乘。以前的算法需要时间(n2 d) 1+o(1)。结果是p和q的Sylvester矩阵S(x)的行列式,它是一个阶为~ d的n x n类toeplitz多项式矩阵。我们使用阻塞技术并利用S(x)的结构将行列式计算减少到矩阵分数描述R(x)Q(x)-1的逆S(x)-1的m x m子矩阵的计算,其中młl n。我们依赖于处理密集多项式矩阵的快速算法:分数描述是通过矩阵分数重建从x进展开获得的,结果作为分母矩阵的行列式。我们还描述了计算一般Gröbner基和一般结构矩阵的特征多项式和单变量商代数的方法的一些扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Computing the Resultant of Generic Bivariate Polynomials
An algorithm is presented for computing the resultant of two generic bivariate polynomials over a field K. For such p and q K[x,y] both of degree d in x and n in y , the algorithm computes the resultant with respect to y using (n2 - 1/ømega d) 1+o(1) arithmetic operations in K, where two n x n matrices are multiplied using O(nømega) operations. Previous algorithms required time (n2 d) 1+o(1). The resultant is the determinant of the Sylvester matrix S(x) of p and q , which is an n x n Toeplitz-like polynomial matrix of degree~ d . We use a blocking technique and exploit the structure of S(x) for reducing the determinant computation to the computation of a matrix fraction description R(x)Q(x)-1 of an m x m submatrix of the inverse S(x)-1, where młl n. We rely on fast algorithms for handling dense polynomial matrices: the fraction description is obtained from an x -adic expansion via matrix fraction reconstruction, and the resultant as the determinant of the denominator matrix. We also describe some extensions of the approach to the computation of generic Gröbner bases and of characteristic polynomials of generic structured matrices and in univariate quotient algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信