反詹尼斯-卡明斯模型中双量子位量子控制非逻辑门和单量子位量子哈达玛逻辑门的理论实现

Christopher Mayero, Joseph Omolo, S. Okeyo
{"title":"反詹尼斯-卡明斯模型中双量子位量子控制非逻辑门和单量子位量子哈达玛逻辑门的理论实现","authors":"Christopher Mayero, Joseph Omolo, S. Okeyo","doi":"10.11648/J.IJAMTP.20210704.13","DOIUrl":null,"url":null,"abstract":"Quantum gates are fundamental in Quantum computing for their role in manipulating elementary information carriers referred to as quantum bits. In this paper, a theoretical scheme for realizing a quantum Hadamard and a quantum controlled-NOT logic gates operations in the anti-Jaynes-Cummings interaction process is provided. Standard Hadamard operation for a specified initial atomic state is achieved by setting a specific sum frequency and photon number in the normalized anti-Jaynes-Cummings qubit state transition operation with the interaction component of the anti-Jaynes-Cummings Hamiltonian generating the state transitions. The quantum controlled-NOT logic gate is realized when a single atomic qubit defined in a two-dimensional Hilbert space is the control qubit and two non-degenerate and orthogonal polarized cavities defined in a two-dimensional Hilbert space make the target qubit. With precise choice of interaction time in the anti-Jaynes-Cummings qubit state transition operations defined in the anti-Jaynes-Cummings sub-space spanned by normalized but non-orthogonal basic qubit state vectors, ideal unit probabilities of success in the quantum controlled-NOT operations is determined.","PeriodicalId":367229,"journal":{"name":"International Journal of Applied Mathematics and Theoretical Physics","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical Realization of a Two Qubit Quantum Controlled-NOT Logic Gate and a Single Qubit Quantum Hadamard Logic Gate in the Anti-Jaynes-Cummings Model\",\"authors\":\"Christopher Mayero, Joseph Omolo, S. Okeyo\",\"doi\":\"10.11648/J.IJAMTP.20210704.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum gates are fundamental in Quantum computing for their role in manipulating elementary information carriers referred to as quantum bits. In this paper, a theoretical scheme for realizing a quantum Hadamard and a quantum controlled-NOT logic gates operations in the anti-Jaynes-Cummings interaction process is provided. Standard Hadamard operation for a specified initial atomic state is achieved by setting a specific sum frequency and photon number in the normalized anti-Jaynes-Cummings qubit state transition operation with the interaction component of the anti-Jaynes-Cummings Hamiltonian generating the state transitions. The quantum controlled-NOT logic gate is realized when a single atomic qubit defined in a two-dimensional Hilbert space is the control qubit and two non-degenerate and orthogonal polarized cavities defined in a two-dimensional Hilbert space make the target qubit. With precise choice of interaction time in the anti-Jaynes-Cummings qubit state transition operations defined in the anti-Jaynes-Cummings sub-space spanned by normalized but non-orthogonal basic qubit state vectors, ideal unit probabilities of success in the quantum controlled-NOT operations is determined.\",\"PeriodicalId\":367229,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Theoretical Physics\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Theoretical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.IJAMTP.20210704.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJAMTP.20210704.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子门是量子计算的基础,因为它们在操纵被称为量子比特的基本信息载体方面起着重要作用。本文给出了在反jines - cummings相互作用过程中实现量子Hadamard和量子控制- not逻辑门运算的理论方案。通过在归一化的反詹尼斯-卡明斯量子比特状态转换操作中设置特定的和频率和光子数,以及反詹尼斯-卡明斯哈密顿量的相互作用分量产生状态转换,可以实现指定初始原子状态的标准哈达玛操作。当在二维希尔伯特空间中定义的单个原子量子位元作为控制量子位元,在二维希尔伯特空间中定义的两个非简并正交极化腔作为目标量子位元时,实现了量子控制非逻辑门。在由归一化但非正交的基本量子比特状态向量张成的反jaynes - cummings子空间中定义的反jaynes - cummings量子比特状态转移操作中,通过精确选择相互作用时间,确定了量子控制非操作的理想单位成功概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical Realization of a Two Qubit Quantum Controlled-NOT Logic Gate and a Single Qubit Quantum Hadamard Logic Gate in the Anti-Jaynes-Cummings Model
Quantum gates are fundamental in Quantum computing for their role in manipulating elementary information carriers referred to as quantum bits. In this paper, a theoretical scheme for realizing a quantum Hadamard and a quantum controlled-NOT logic gates operations in the anti-Jaynes-Cummings interaction process is provided. Standard Hadamard operation for a specified initial atomic state is achieved by setting a specific sum frequency and photon number in the normalized anti-Jaynes-Cummings qubit state transition operation with the interaction component of the anti-Jaynes-Cummings Hamiltonian generating the state transitions. The quantum controlled-NOT logic gate is realized when a single atomic qubit defined in a two-dimensional Hilbert space is the control qubit and two non-degenerate and orthogonal polarized cavities defined in a two-dimensional Hilbert space make the target qubit. With precise choice of interaction time in the anti-Jaynes-Cummings qubit state transition operations defined in the anti-Jaynes-Cummings sub-space spanned by normalized but non-orthogonal basic qubit state vectors, ideal unit probabilities of success in the quantum controlled-NOT operations is determined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信