多维希尔伯特变换的Sinc逼近及其应用

Jie Chen, Liaoyuan Fan, Lingfei Li, Gongqiu Zhang
{"title":"多维希尔伯特变换的Sinc逼近及其应用","authors":"Jie Chen, Liaoyuan Fan, Lingfei Li, Gongqiu Zhang","doi":"10.2139/ssrn.3091664","DOIUrl":null,"url":null,"abstract":"Many science and engineering applications require computing Hilbert transform. Sinc approximation is an efficient algorithm for computing one-dimensional (1D) Hilbert transform. In this paper, we develop Sinc approximation for computing multidimensional Hilbert transform and analyze its convergence rate. We apply our method to two applications: detecting edges of 2D images, and pricing discretely monitored barrier options and calculating survival probabilities in two-asset/three-asset models where the prices follow exponential Levy processes. Extensive numerical experiments confirm the efficiency of Sinc approximation for computing 2D and 3D Hilbert transforms in these applications.","PeriodicalId":129812,"journal":{"name":"Financial Engineering eJournal","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sinc Approximation of Multidimensional Hilbert Transform and Its Applications\",\"authors\":\"Jie Chen, Liaoyuan Fan, Lingfei Li, Gongqiu Zhang\",\"doi\":\"10.2139/ssrn.3091664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many science and engineering applications require computing Hilbert transform. Sinc approximation is an efficient algorithm for computing one-dimensional (1D) Hilbert transform. In this paper, we develop Sinc approximation for computing multidimensional Hilbert transform and analyze its convergence rate. We apply our method to two applications: detecting edges of 2D images, and pricing discretely monitored barrier options and calculating survival probabilities in two-asset/three-asset models where the prices follow exponential Levy processes. Extensive numerical experiments confirm the efficiency of Sinc approximation for computing 2D and 3D Hilbert transforms in these applications.\",\"PeriodicalId\":129812,\"journal\":{\"name\":\"Financial Engineering eJournal\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Financial Engineering eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3091664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Financial Engineering eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3091664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

许多科学和工程应用都需要计算希尔伯特变换。Sinc近似是计算一维希尔伯特变换的一种有效算法。本文提出了计算多维希尔伯特变换的Sinc近似,并分析了其收敛速度。我们将我们的方法应用于两个应用:检测2D图像的边缘,对离散监测的障碍期权进行定价,并计算两资产/三资产模型中的生存概率,其中价格遵循指数Levy过程。大量的数值实验证实了Sinc近似在这些应用中计算二维和三维希尔伯特变换的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sinc Approximation of Multidimensional Hilbert Transform and Its Applications
Many science and engineering applications require computing Hilbert transform. Sinc approximation is an efficient algorithm for computing one-dimensional (1D) Hilbert transform. In this paper, we develop Sinc approximation for computing multidimensional Hilbert transform and analyze its convergence rate. We apply our method to two applications: detecting edges of 2D images, and pricing discretely monitored barrier options and calculating survival probabilities in two-asset/three-asset models where the prices follow exponential Levy processes. Extensive numerical experiments confirm the efficiency of Sinc approximation for computing 2D and 3D Hilbert transforms in these applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信