高性能计算实现下一代低温废热回收

V. Rao, M. Delchini, Mohammad Bani Ahmad, P. Jain
{"title":"高性能计算实现下一代低温废热回收","authors":"V. Rao, M. Delchini, Mohammad Bani Ahmad, P. Jain","doi":"10.2172/1649390","DOIUrl":null,"url":null,"abstract":"\n The Oak Ridge National Laboratory (ORNL), in collaboration with Eaton Corporation, has performed computational research and development to design an innovative, direct-contact heat exchanger (DCHE) that is optimized for a low-temperature organic Rankine cycle.\n A computational fluid dynamics (CFD) model of DCHE was developed in STAR-CCM+ which was later calibrated and validated against the experimental data from literature. The validated CFD model was used to develop an industry-relevant liquid-liquid direct-contact heat exchanger system with water and pentane working fluids. This work heavily relied on high-performance computing (HPC) resources to investigate multiple designs and to identify a baseline design.\n The innovative design consists of two chambers connected by a converging-diverging nozzle. Phase change for pentane, from liquid to vapor, occurs in the first chamber, whereas the second chamber serves as a separator. Outlets in the second chamber are staggered to prevent entrainment of the liquid water by the gaseous pentane. CFD results confirm that the design behaves as expected and the addition of baffles enhances mixing and heat transfer for higher flow rates while preventing entrainment of gaseous pentane by the liquid water.","PeriodicalId":282703,"journal":{"name":"ASME 2020 Power Conference","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Performance Computing to Enable Next-Generation Low-Temperature Waste Heat Recovery\",\"authors\":\"V. Rao, M. Delchini, Mohammad Bani Ahmad, P. Jain\",\"doi\":\"10.2172/1649390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The Oak Ridge National Laboratory (ORNL), in collaboration with Eaton Corporation, has performed computational research and development to design an innovative, direct-contact heat exchanger (DCHE) that is optimized for a low-temperature organic Rankine cycle.\\n A computational fluid dynamics (CFD) model of DCHE was developed in STAR-CCM+ which was later calibrated and validated against the experimental data from literature. The validated CFD model was used to develop an industry-relevant liquid-liquid direct-contact heat exchanger system with water and pentane working fluids. This work heavily relied on high-performance computing (HPC) resources to investigate multiple designs and to identify a baseline design.\\n The innovative design consists of two chambers connected by a converging-diverging nozzle. Phase change for pentane, from liquid to vapor, occurs in the first chamber, whereas the second chamber serves as a separator. Outlets in the second chamber are staggered to prevent entrainment of the liquid water by the gaseous pentane. CFD results confirm that the design behaves as expected and the addition of baffles enhances mixing and heat transfer for higher flow rates while preventing entrainment of gaseous pentane by the liquid water.\",\"PeriodicalId\":282703,\"journal\":{\"name\":\"ASME 2020 Power Conference\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2020 Power Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2172/1649390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2020 Power Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2172/1649390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

橡树岭国家实验室(ORNL)与伊顿公司合作,进行了计算研究和开发,设计了一种创新的直接接触式热交换器(DCHE),该热交换器针对低温有机朗肯循环进行了优化。在STAR-CCM+中建立了DCHE的计算流体动力学(CFD)模型,并根据文献中的实验数据进行了校准和验证。将验证的CFD模型用于开发行业相关的水-戊烷工质液-液直接接触换热器系统。这项工作严重依赖于高性能计算(HPC)资源来调查多个设计并确定基线设计。创新的设计由两个腔室组成,由一个会聚-发散喷嘴连接。戊烷的相变,从液体到蒸汽,发生在第一室,而第二室作为分离器。第二腔室的出口错开,以防止气态戊烷夹带液态水。CFD结果证实,该设计符合预期,挡板的加入增强了混合和传热,以实现更高的流速,同时防止气态戊烷被液态水夹带。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Performance Computing to Enable Next-Generation Low-Temperature Waste Heat Recovery
The Oak Ridge National Laboratory (ORNL), in collaboration with Eaton Corporation, has performed computational research and development to design an innovative, direct-contact heat exchanger (DCHE) that is optimized for a low-temperature organic Rankine cycle. A computational fluid dynamics (CFD) model of DCHE was developed in STAR-CCM+ which was later calibrated and validated against the experimental data from literature. The validated CFD model was used to develop an industry-relevant liquid-liquid direct-contact heat exchanger system with water and pentane working fluids. This work heavily relied on high-performance computing (HPC) resources to investigate multiple designs and to identify a baseline design. The innovative design consists of two chambers connected by a converging-diverging nozzle. Phase change for pentane, from liquid to vapor, occurs in the first chamber, whereas the second chamber serves as a separator. Outlets in the second chamber are staggered to prevent entrainment of the liquid water by the gaseous pentane. CFD results confirm that the design behaves as expected and the addition of baffles enhances mixing and heat transfer for higher flow rates while preventing entrainment of gaseous pentane by the liquid water.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信