AES加密算法素数+探测侧信道攻击的运行时检测

M. Mushtaq, Ayaz Akram, Muhammad Khurram Bhatti, R. N. B. Rais, Vianney Lapôtre, G. Gogniat
{"title":"AES加密算法素数+探测侧信道攻击的运行时检测","authors":"M. Mushtaq, Ayaz Akram, Muhammad Khurram Bhatti, R. N. B. Rais, Vianney Lapôtre, G. Gogniat","doi":"10.1109/GIIS.2018.8635767","DOIUrl":null,"url":null,"abstract":"This paper presents a run-time detection mechanism for access-driven cache-based Side-Channel Attacks (CSCAs) on Intel’s x86 architecture. We demonstrate the detection capability and effectiveness of proposed mechanism on Prime+Probe attcks. The mechanism comprises of multiple machine learning models, which use real-time data from the HPCs for detection. Experiments are performed with two different implementations of AES cryptosystem while under Prime+Probe attack. We provide results under stringent design constraints such as: realistic system load conditions, real-time detection accuracy, speed, system-wide performance overhead and distribution of error (i.e., false positives and negatives) for the used machine learning models. Our results show detection accuracy of $> 99$% for Prime+Probe attack with performance overhead of 3-4% at the highest detection speed, i.e., within 1-2% completion of 4800 AES encryption rounds needed to complete a successful attack.","PeriodicalId":318525,"journal":{"name":"2018 Global Information Infrastructure and Networking Symposium (GIIS)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Run-time Detection of Prime + Probe Side-Channel Attack on AES Encryption Algorithm\",\"authors\":\"M. Mushtaq, Ayaz Akram, Muhammad Khurram Bhatti, R. N. B. Rais, Vianney Lapôtre, G. Gogniat\",\"doi\":\"10.1109/GIIS.2018.8635767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a run-time detection mechanism for access-driven cache-based Side-Channel Attacks (CSCAs) on Intel’s x86 architecture. We demonstrate the detection capability and effectiveness of proposed mechanism on Prime+Probe attcks. The mechanism comprises of multiple machine learning models, which use real-time data from the HPCs for detection. Experiments are performed with two different implementations of AES cryptosystem while under Prime+Probe attack. We provide results under stringent design constraints such as: realistic system load conditions, real-time detection accuracy, speed, system-wide performance overhead and distribution of error (i.e., false positives and negatives) for the used machine learning models. Our results show detection accuracy of $> 99$% for Prime+Probe attack with performance overhead of 3-4% at the highest detection speed, i.e., within 1-2% completion of 4800 AES encryption rounds needed to complete a successful attack.\",\"PeriodicalId\":318525,\"journal\":{\"name\":\"2018 Global Information Infrastructure and Networking Symposium (GIIS)\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Global Information Infrastructure and Networking Symposium (GIIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GIIS.2018.8635767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Global Information Infrastructure and Networking Symposium (GIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GIIS.2018.8635767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

本文提出了一种基于Intel x86架构的基于缓存的访问驱动侧信道攻击(csca)的运行时检测机制。我们证明了所提出的机制对Prime+Probe攻击的检测能力和有效性。该机制由多个机器学习模型组成,这些模型使用来自hpc的实时数据进行检测。在Prime+Probe攻击下,用两种不同实现的AES密码系统进行了实验。我们在严格的设计约束下提供结果,例如:真实的系统负载条件,实时检测精度,速度,系统范围的性能开销和使用的机器学习模型的误差分布(即假阳性和阴性)。我们的研究结果表明,在最高检测速度下,Prime+Probe攻击的检测准确率> 99 %,性能开销为3-4%,即在完成4800 AES加密轮所需的1-2%内完成一次成功的攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Run-time Detection of Prime + Probe Side-Channel Attack on AES Encryption Algorithm
This paper presents a run-time detection mechanism for access-driven cache-based Side-Channel Attacks (CSCAs) on Intel’s x86 architecture. We demonstrate the detection capability and effectiveness of proposed mechanism on Prime+Probe attcks. The mechanism comprises of multiple machine learning models, which use real-time data from the HPCs for detection. Experiments are performed with two different implementations of AES cryptosystem while under Prime+Probe attack. We provide results under stringent design constraints such as: realistic system load conditions, real-time detection accuracy, speed, system-wide performance overhead and distribution of error (i.e., false positives and negatives) for the used machine learning models. Our results show detection accuracy of $> 99$% for Prime+Probe attack with performance overhead of 3-4% at the highest detection speed, i.e., within 1-2% completion of 4800 AES encryption rounds needed to complete a successful attack.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信