一种新的深度CNN模型用于从MR图像中分类脑肿瘤

H. Rai, K. Chatterjee, Apita Gupta, Alok Dubey
{"title":"一种新的深度CNN模型用于从MR图像中分类脑肿瘤","authors":"H. Rai, K. Chatterjee, Apita Gupta, Alok Dubey","doi":"10.1109/ICCE50343.2020.9290740","DOIUrl":null,"url":null,"abstract":"the segmentation of brain tumor and its classification in the early stage is very important for the purpose of diagnosis and treatment. This work introduces a new deep neural network model Lu-Net with less layers, less complexity and very efficient for identifying tumors. The work involves classifying brain magnetic resonance (MR) images from a dataset of 253 images of high pixels into two categories of tumors and non-tumors. MR images are initially resized, cropped, preprocessed, and augmented for accurate and rapid training of deep convolutional neural network (CNN) models. The performance of the Lu-Net model has been evaluated using five types of statistical evaluation matrix accuracy, recall, specificity, F-score and accuracy, and its performance also compared with other two types of model Le-Net and VGG-16. CNN models were trained and evaluated on augmented dataset and tested on untrained datasets. The overall accuracy of Le-Net, VGG-16 and the proposed model is 88%, 90% and 98%, respectively, indicating the superiority of the proposed model.","PeriodicalId":421963,"journal":{"name":"2020 IEEE 1st International Conference for Convergence in Engineering (ICCE)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Novel Deep CNN Model for Classification of Brain Tumor from MR Images\",\"authors\":\"H. Rai, K. Chatterjee, Apita Gupta, Alok Dubey\",\"doi\":\"10.1109/ICCE50343.2020.9290740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"the segmentation of brain tumor and its classification in the early stage is very important for the purpose of diagnosis and treatment. This work introduces a new deep neural network model Lu-Net with less layers, less complexity and very efficient for identifying tumors. The work involves classifying brain magnetic resonance (MR) images from a dataset of 253 images of high pixels into two categories of tumors and non-tumors. MR images are initially resized, cropped, preprocessed, and augmented for accurate and rapid training of deep convolutional neural network (CNN) models. The performance of the Lu-Net model has been evaluated using five types of statistical evaluation matrix accuracy, recall, specificity, F-score and accuracy, and its performance also compared with other two types of model Le-Net and VGG-16. CNN models were trained and evaluated on augmented dataset and tested on untrained datasets. The overall accuracy of Le-Net, VGG-16 and the proposed model is 88%, 90% and 98%, respectively, indicating the superiority of the proposed model.\",\"PeriodicalId\":421963,\"journal\":{\"name\":\"2020 IEEE 1st International Conference for Convergence in Engineering (ICCE)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 1st International Conference for Convergence in Engineering (ICCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE50343.2020.9290740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 1st International Conference for Convergence in Engineering (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE50343.2020.9290740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

脑肿瘤的早期分割和分类对诊断和治疗具有重要意义。本文提出了一种新的深度神经网络模型Lu-Net,该模型具有层数少、复杂度低、肿瘤识别效率高的特点。这项工作包括将253张高像素图像数据集中的脑磁共振(MR)图像分为肿瘤和非肿瘤两类。为了准确快速地训练深度卷积神经网络(CNN)模型,MR图像最初被调整大小、裁剪、预处理和增强。采用统计评价矩阵准确率、召回率、特异性、f值和准确率五种类型对Lu-Net模型的性能进行评价,并与其他两种类型的Le-Net模型和VGG-16模型进行比较。CNN模型在增强数据集上进行训练和评估,在未训练的数据集上进行测试。Le-Net、VGG-16和本文模型的总体准确率分别为88%、90%和98%,表明本文模型的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Deep CNN Model for Classification of Brain Tumor from MR Images
the segmentation of brain tumor and its classification in the early stage is very important for the purpose of diagnosis and treatment. This work introduces a new deep neural network model Lu-Net with less layers, less complexity and very efficient for identifying tumors. The work involves classifying brain magnetic resonance (MR) images from a dataset of 253 images of high pixels into two categories of tumors and non-tumors. MR images are initially resized, cropped, preprocessed, and augmented for accurate and rapid training of deep convolutional neural network (CNN) models. The performance of the Lu-Net model has been evaluated using five types of statistical evaluation matrix accuracy, recall, specificity, F-score and accuracy, and its performance also compared with other two types of model Le-Net and VGG-16. CNN models were trained and evaluated on augmented dataset and tested on untrained datasets. The overall accuracy of Le-Net, VGG-16 and the proposed model is 88%, 90% and 98%, respectively, indicating the superiority of the proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信