用Stein-Chen方法给出了成功运行长度至少k的泊松近似的界

C. Sahatsathatsana
{"title":"用Stein-Chen方法给出了成功运行长度至少k的泊松近似的界","authors":"C. Sahatsathatsana","doi":"10.12988/IJMA.2019.81281","DOIUrl":null,"url":null,"abstract":"The probability distribution of the number of success runs of the length k (k ≥ 1) in n (n ≥ 1) Bernoulli trials is obtained. It is noted that this distribution is a binomial distribution of the order k, and several open problems pertaining to it are stated. Let Wn denotes the number of success runs with the length k or more and we give bound for Wn by Poisson distribution via Stein-Chen coupling method. Mathematics Subject Classification: 60G07","PeriodicalId":431531,"journal":{"name":"International Journal of Mathematical Analysis","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bound on Poisson approximation on the length of success runs at least k by Stein-Chen method\",\"authors\":\"C. Sahatsathatsana\",\"doi\":\"10.12988/IJMA.2019.81281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The probability distribution of the number of success runs of the length k (k ≥ 1) in n (n ≥ 1) Bernoulli trials is obtained. It is noted that this distribution is a binomial distribution of the order k, and several open problems pertaining to it are stated. Let Wn denotes the number of success runs with the length k or more and we give bound for Wn by Poisson distribution via Stein-Chen coupling method. Mathematics Subject Classification: 60G07\",\"PeriodicalId\":431531,\"journal\":{\"name\":\"International Journal of Mathematical Analysis\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12988/IJMA.2019.81281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/IJMA.2019.81281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

得到了n (n≥1)次伯努利试验中k (k≥1)次成功的概率分布。注意到这个分布是k阶的二项分布,并说明了与之相关的几个未决问题。令Wn表示长度大于等于k的成功运行次数,并通过Stein-Chen耦合方法用泊松分布给出Wn的界。数学学科分类:60G07
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bound on Poisson approximation on the length of success runs at least k by Stein-Chen method
The probability distribution of the number of success runs of the length k (k ≥ 1) in n (n ≥ 1) Bernoulli trials is obtained. It is noted that this distribution is a binomial distribution of the order k, and several open problems pertaining to it are stated. Let Wn denotes the number of success runs with the length k or more and we give bound for Wn by Poisson distribution via Stein-Chen coupling method. Mathematics Subject Classification: 60G07
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信