室内移动机器人的快速人工地标检测

D. Kartashov, Arthur Huletski, K. Krinkin
{"title":"室内移动机器人的快速人工地标检测","authors":"D. Kartashov, Arthur Huletski, K. Krinkin","doi":"10.15439/2015F232","DOIUrl":null,"url":null,"abstract":"Nowadays the big challenge in simultaneous localization and mapping (SLAM) of mobile robots is the creation of efficient and robust algorithms. Significant Number of SLAM algorithms rely on unique features or or use artificial landmarks received from camera images. Feature points and landmarks extraction from images have two significant drawbacks: CPU consumption and weak robustness depending on environment conditions. In this paper we consider performance issues for landmark detection, introduce a new artificial landmark design and fast algorithm for detecting and tracking them in arbitrary images. Also we provide results of performance optimization for different hardware platforms.","PeriodicalId":276884,"journal":{"name":"2015 Federated Conference on Computer Science and Information Systems (FedCSIS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fast artificial landmark detection for indoor mobile robots\",\"authors\":\"D. Kartashov, Arthur Huletski, K. Krinkin\",\"doi\":\"10.15439/2015F232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays the big challenge in simultaneous localization and mapping (SLAM) of mobile robots is the creation of efficient and robust algorithms. Significant Number of SLAM algorithms rely on unique features or or use artificial landmarks received from camera images. Feature points and landmarks extraction from images have two significant drawbacks: CPU consumption and weak robustness depending on environment conditions. In this paper we consider performance issues for landmark detection, introduce a new artificial landmark design and fast algorithm for detecting and tracking them in arbitrary images. Also we provide results of performance optimization for different hardware platforms.\",\"PeriodicalId\":276884,\"journal\":{\"name\":\"2015 Federated Conference on Computer Science and Information Systems (FedCSIS)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Federated Conference on Computer Science and Information Systems (FedCSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15439/2015F232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Federated Conference on Computer Science and Information Systems (FedCSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15439/2015F232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

目前,移动机器人同步定位与映射(SLAM)面临的最大挑战是建立高效、鲁棒的算法。大量的SLAM算法依赖于独特的特征或使用从相机图像中接收的人工地标。从图像中提取特征点和地标有两个明显的缺点:CPU消耗和对环境条件的鲁棒性较弱。本文考虑了地标检测的性能问题,介绍了一种新的人工地标设计和快速算法,用于在任意图像中检测和跟踪地标。我们还提供了不同硬件平台的性能优化结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast artificial landmark detection for indoor mobile robots
Nowadays the big challenge in simultaneous localization and mapping (SLAM) of mobile robots is the creation of efficient and robust algorithms. Significant Number of SLAM algorithms rely on unique features or or use artificial landmarks received from camera images. Feature points and landmarks extraction from images have two significant drawbacks: CPU consumption and weak robustness depending on environment conditions. In this paper we consider performance issues for landmark detection, introduce a new artificial landmark design and fast algorithm for detecting and tracking them in arbitrary images. Also we provide results of performance optimization for different hardware platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信