信息瓶颈的变分自编码器解纠缠三维面部表情建模

Hao Sun, Nick E. Pears, Yajie Gu
{"title":"信息瓶颈的变分自编码器解纠缠三维面部表情建模","authors":"Hao Sun, Nick E. Pears, Yajie Gu","doi":"10.1109/WACV51458.2022.00239","DOIUrl":null,"url":null,"abstract":"Learning a disentangled representation is essential to build 3D face models that accurately capture identity and expression. We propose a novel variational autoencoder (VAE) framework to disentangle identity and expression from 3D input faces that have a wide variety of expressions. Specifically, we design a system that has two decoders: one for neutral-expression faces (i.e. identity-only faces) and one for the original (expressive) input faces respectively. Crucially, we have an additional mutual-information regulariser applied on the identity part to solve the issue of imbalanced information over the expressive input faces and the reconstructed neutral faces. Our evaluations on two public datasets (CoMA and BU-3DFE) show that this model achieves competitive results on the 3D face reconstruction task and state-of-the-art results on identity-expression disentanglement. We also show that by updating to a conditional VAE, we have a system that generates different levels of expressions from semantically meaningful variables.","PeriodicalId":297092,"journal":{"name":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Information Bottlenecked Variational Autoencoder for Disentangled 3D Facial Expression Modelling\",\"authors\":\"Hao Sun, Nick E. Pears, Yajie Gu\",\"doi\":\"10.1109/WACV51458.2022.00239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning a disentangled representation is essential to build 3D face models that accurately capture identity and expression. We propose a novel variational autoencoder (VAE) framework to disentangle identity and expression from 3D input faces that have a wide variety of expressions. Specifically, we design a system that has two decoders: one for neutral-expression faces (i.e. identity-only faces) and one for the original (expressive) input faces respectively. Crucially, we have an additional mutual-information regulariser applied on the identity part to solve the issue of imbalanced information over the expressive input faces and the reconstructed neutral faces. Our evaluations on two public datasets (CoMA and BU-3DFE) show that this model achieves competitive results on the 3D face reconstruction task and state-of-the-art results on identity-expression disentanglement. We also show that by updating to a conditional VAE, we have a system that generates different levels of expressions from semantically meaningful variables.\",\"PeriodicalId\":297092,\"journal\":{\"name\":\"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV51458.2022.00239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV51458.2022.00239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

学习一种解纠缠的表示对于建立准确捕捉身份和表情的3D面部模型至关重要。我们提出了一种新的变分自编码器(VAE)框架,用于从具有多种表情的3D输入人脸中分离身份和表情。具体来说,我们设计了一个具有两个解码器的系统:一个用于中性表情面孔(即只有身份的面孔),另一个用于原始(表达)输入面孔。至关重要的是,我们在身份部分应用了一个额外的互信息正则器,以解决表达性输入人脸和重建的中性人脸之间的信息不平衡问题。我们对两个公共数据集(CoMA和BU-3DFE)的评估表明,该模型在3D人脸重建任务上取得了相当好的结果,在身份-表情解纠缠方面取得了最先进的结果。我们还表明,通过更新到条件VAE,我们有一个从语义上有意义的变量生成不同级别表达式的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Information Bottlenecked Variational Autoencoder for Disentangled 3D Facial Expression Modelling
Learning a disentangled representation is essential to build 3D face models that accurately capture identity and expression. We propose a novel variational autoencoder (VAE) framework to disentangle identity and expression from 3D input faces that have a wide variety of expressions. Specifically, we design a system that has two decoders: one for neutral-expression faces (i.e. identity-only faces) and one for the original (expressive) input faces respectively. Crucially, we have an additional mutual-information regulariser applied on the identity part to solve the issue of imbalanced information over the expressive input faces and the reconstructed neutral faces. Our evaluations on two public datasets (CoMA and BU-3DFE) show that this model achieves competitive results on the 3D face reconstruction task and state-of-the-art results on identity-expression disentanglement. We also show that by updating to a conditional VAE, we have a system that generates different levels of expressions from semantically meaningful variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信