倾转旋翼飞机自适应反步和θ-D控制器

P. Krishnamurthy, F. Khorrami
{"title":"倾转旋翼飞机自适应反步和θ-D控制器","authors":"P. Krishnamurthy, F. Khorrami","doi":"10.1109/MED.2011.5983085","DOIUrl":null,"url":null,"abstract":"The robust adaptive control of tilt-rotor aircraft is addressed using backstepping and θ-D based control design techniques. The designs specifically focus on providing high robustness to time-varying system parameters and disturbance effects from the environment to attain good disturbance attenuation properties in highly aerodynamically challenging environments such as shipboard environments. The control system is structured with a modular architecture combining adaptive backstepping and adaptive θ-D control algorithms and provides flexibility and customizability for various tilt-rotor aircraft configurations and operating environments. The overall control system and its constituent algorithms are designed to either be able to operate on their own to provide fully autonomous flight or to operate in conjunction with a human pilot or an existing baseline controller in a control augmentation fashion to provide additional robustness and reliability improvements under severe aerodynamic disturbance conditions. The robustness, stability, and performance of the proposed control algorithms are demonstrated through simulation based studies.","PeriodicalId":146203,"journal":{"name":"2011 19th Mediterranean Conference on Control & Automation (MED)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Adaptive backstepping and θ-D based controllers for a tilt-rotor aircraft\",\"authors\":\"P. Krishnamurthy, F. Khorrami\",\"doi\":\"10.1109/MED.2011.5983085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The robust adaptive control of tilt-rotor aircraft is addressed using backstepping and θ-D based control design techniques. The designs specifically focus on providing high robustness to time-varying system parameters and disturbance effects from the environment to attain good disturbance attenuation properties in highly aerodynamically challenging environments such as shipboard environments. The control system is structured with a modular architecture combining adaptive backstepping and adaptive θ-D control algorithms and provides flexibility and customizability for various tilt-rotor aircraft configurations and operating environments. The overall control system and its constituent algorithms are designed to either be able to operate on their own to provide fully autonomous flight or to operate in conjunction with a human pilot or an existing baseline controller in a control augmentation fashion to provide additional robustness and reliability improvements under severe aerodynamic disturbance conditions. The robustness, stability, and performance of the proposed control algorithms are demonstrated through simulation based studies.\",\"PeriodicalId\":146203,\"journal\":{\"name\":\"2011 19th Mediterranean Conference on Control & Automation (MED)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 19th Mediterranean Conference on Control & Automation (MED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2011.5983085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 19th Mediterranean Conference on Control & Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2011.5983085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

采用反步法和基于θ-D的控制设计技术对倾转旋翼机进行鲁棒自适应控制。这些设计特别注重对时变系统参数和环境干扰影响提供高鲁棒性,以便在高度空气动力学挑战的环境(如船上环境)中获得良好的干扰衰减性能。控制系统采用模块化结构,结合自适应反步和自适应θ-D控制算法,为各种倾转旋翼飞机配置和操作环境提供灵活性和可定制性。整个控制系统及其组成算法被设计为能够自行运行以提供完全自主飞行,或与人类飞行员或现有基线控制器一起以控制增强方式运行,以在严重空气动力学干扰条件下提供额外的鲁棒性和可靠性改进。通过仿真研究证明了所提控制算法的鲁棒性、稳定性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive backstepping and θ-D based controllers for a tilt-rotor aircraft
The robust adaptive control of tilt-rotor aircraft is addressed using backstepping and θ-D based control design techniques. The designs specifically focus on providing high robustness to time-varying system parameters and disturbance effects from the environment to attain good disturbance attenuation properties in highly aerodynamically challenging environments such as shipboard environments. The control system is structured with a modular architecture combining adaptive backstepping and adaptive θ-D control algorithms and provides flexibility and customizability for various tilt-rotor aircraft configurations and operating environments. The overall control system and its constituent algorithms are designed to either be able to operate on their own to provide fully autonomous flight or to operate in conjunction with a human pilot or an existing baseline controller in a control augmentation fashion to provide additional robustness and reliability improvements under severe aerodynamic disturbance conditions. The robustness, stability, and performance of the proposed control algorithms are demonstrated through simulation based studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信