男人之于人,如同女人之于地点:命名实体识别中的性别偏见测量

Ninareh Mehrabi, Thamme Gowda, Fred Morstatter, Nanyun Peng, A. Galstyan
{"title":"男人之于人,如同女人之于地点:命名实体识别中的性别偏见测量","authors":"Ninareh Mehrabi, Thamme Gowda, Fred Morstatter, Nanyun Peng, A. Galstyan","doi":"10.1145/3372923.3404804","DOIUrl":null,"url":null,"abstract":"In this paper, we study the bias in named entity recognition (NER) models---specifically, the difference in the ability to recognize male and female names as PERSON entity types. We evaluate NER models on a dataset containing 139 years of U.S. census baby names and find that relatively more female names, as opposed to male names, are not recognized as PERSON entities. The result of this analysis yields a new benchmark for gender bias evaluation in named entity recognition systems. The data and code for the application of this benchmark is publicly available for researchers to use.","PeriodicalId":389616,"journal":{"name":"Proceedings of the 31st ACM Conference on Hypertext and Social Media","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Man is to Person as Woman is to Location: Measuring Gender Bias in Named Entity Recognition\",\"authors\":\"Ninareh Mehrabi, Thamme Gowda, Fred Morstatter, Nanyun Peng, A. Galstyan\",\"doi\":\"10.1145/3372923.3404804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the bias in named entity recognition (NER) models---specifically, the difference in the ability to recognize male and female names as PERSON entity types. We evaluate NER models on a dataset containing 139 years of U.S. census baby names and find that relatively more female names, as opposed to male names, are not recognized as PERSON entities. The result of this analysis yields a new benchmark for gender bias evaluation in named entity recognition systems. The data and code for the application of this benchmark is publicly available for researchers to use.\",\"PeriodicalId\":389616,\"journal\":{\"name\":\"Proceedings of the 31st ACM Conference on Hypertext and Social Media\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 31st ACM Conference on Hypertext and Social Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3372923.3404804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st ACM Conference on Hypertext and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3372923.3404804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

在本文中,我们研究了命名实体识别(NER)模型中的偏差——特别是将男性和女性名字识别为PERSON实体类型的能力差异。我们在包含139年美国人口普查婴儿名字的数据集上评估了NER模型,发现相对于男性名字,更多的女性名字没有被识别为PERSON实体。这一分析的结果为命名实体识别系统中的性别偏见评估提供了一个新的基准。该基准应用程序的数据和代码是公开的,可供研究人员使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Man is to Person as Woman is to Location: Measuring Gender Bias in Named Entity Recognition
In this paper, we study the bias in named entity recognition (NER) models---specifically, the difference in the ability to recognize male and female names as PERSON entity types. We evaluate NER models on a dataset containing 139 years of U.S. census baby names and find that relatively more female names, as opposed to male names, are not recognized as PERSON entities. The result of this analysis yields a new benchmark for gender bias evaluation in named entity recognition systems. The data and code for the application of this benchmark is publicly available for researchers to use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信