{"title":"随机帧从二进制线性块码","authors":"B. Babadi, V. Tarokh","doi":"10.1109/CISS.2010.5464847","DOIUrl":null,"url":null,"abstract":"Let C be an [n, k, d] binary linear block code of length n, dimension k and minimum Hamming distance d over GF(2<sup>n</sup>). Let d<sup>⊥</sup> denote the minimum Hamming distance of the dual code of C over GF(2<sup>n</sup>). Let ɛ : GF(2<sup>n</sup>) → {−1, 1}n be the component-wise mapping ɛ(v<inf>i</inf>) := (−1)<sup>vi</sup> , for v =(v<inf>1</inf>, v<inf>2</inf>, … , v<inf>n</inf>) ∈ GF(2<sup>n</sup>). Finally, for p ≪ n, let φ<inf>C</inf> be a p × n random matrix whose rows are obtained by mapping a uniformly drawn set of size p of the codewords of C under e. Recently, the authors have established that [3] for d<sup>⊥</sup> large enough and y := p/n ∈ (0, 1) fixed, as n → ∞ the empirical eigen-distribution of the Gram matrix of 1 over √n times φ<inf>C</inf> resembles that of a random i.i.d. Rademacher matrix (i.e., the Marchenko-Pastur distribution). In this paper, we overview this result and discuss its implications on the design of frames for compressed sensing applications.","PeriodicalId":118872,"journal":{"name":"2010 44th Annual Conference on Information Sciences and Systems (CISS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Random frames from binary linear block codes\",\"authors\":\"B. Babadi, V. Tarokh\",\"doi\":\"10.1109/CISS.2010.5464847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let C be an [n, k, d] binary linear block code of length n, dimension k and minimum Hamming distance d over GF(2<sup>n</sup>). Let d<sup>⊥</sup> denote the minimum Hamming distance of the dual code of C over GF(2<sup>n</sup>). Let ɛ : GF(2<sup>n</sup>) → {−1, 1}n be the component-wise mapping ɛ(v<inf>i</inf>) := (−1)<sup>vi</sup> , for v =(v<inf>1</inf>, v<inf>2</inf>, … , v<inf>n</inf>) ∈ GF(2<sup>n</sup>). Finally, for p ≪ n, let φ<inf>C</inf> be a p × n random matrix whose rows are obtained by mapping a uniformly drawn set of size p of the codewords of C under e. Recently, the authors have established that [3] for d<sup>⊥</sup> large enough and y := p/n ∈ (0, 1) fixed, as n → ∞ the empirical eigen-distribution of the Gram matrix of 1 over √n times φ<inf>C</inf> resembles that of a random i.i.d. Rademacher matrix (i.e., the Marchenko-Pastur distribution). In this paper, we overview this result and discuss its implications on the design of frames for compressed sensing applications.\",\"PeriodicalId\":118872,\"journal\":{\"name\":\"2010 44th Annual Conference on Information Sciences and Systems (CISS)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 44th Annual Conference on Information Sciences and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2010.5464847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 44th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2010.5464847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
摘要
设C为长度为n,维数为k,最小汉明距离为d / GF(2n)的二进制线性分组码[n, k, d]。令d⊥表示C / GF(2n)对偶码的最小汉明距离。设,当v =(v1, v2,…,vn)∈GF(2n)时,为组件映射的函数,即:GF(2n)→{−1,1}n =(−1)vi。最后,对于p≪n,让φC p×n随机矩阵的行映射得到的一组均匀画下的大小码字的p C e。最近,[3]的作者建立了d⊥足够大的和y: = p / n∈(0,1)固定,当n→∞实证eigen-distribution 1 /√n次的格拉姆矩阵φC类似于一个随机先验知识。随处矩阵(即Marchenko-Pastur分布)。在本文中,我们概述了这一结果,并讨论了其对压缩传感应用的帧设计的影响。
Let C be an [n, k, d] binary linear block code of length n, dimension k and minimum Hamming distance d over GF(2n). Let d⊥ denote the minimum Hamming distance of the dual code of C over GF(2n). Let ɛ : GF(2n) → {−1, 1}n be the component-wise mapping ɛ(vi) := (−1)vi , for v =(v1, v2, … , vn) ∈ GF(2n). Finally, for p ≪ n, let φC be a p × n random matrix whose rows are obtained by mapping a uniformly drawn set of size p of the codewords of C under e. Recently, the authors have established that [3] for d⊥ large enough and y := p/n ∈ (0, 1) fixed, as n → ∞ the empirical eigen-distribution of the Gram matrix of 1 over √n times φC resembles that of a random i.i.d. Rademacher matrix (i.e., the Marchenko-Pastur distribution). In this paper, we overview this result and discuss its implications on the design of frames for compressed sensing applications.