变换秩1格用于高维近似

Robert Nasdala, D. Potts
{"title":"变换秩1格用于高维近似","authors":"Robert Nasdala, D. Potts","doi":"10.1553/etna_vol53s239","DOIUrl":null,"url":null,"abstract":"This paper describes an extension of Fourier approximation methods for multivariate functions defined on the torus $\\mathbb{T}^d$ to functions in a weighted Hilbert space $L_{2}(\\mathbb{R}^d, \\omega)$ via a multivariate change of variables $\\psi:\\left(-\\frac{1}{2},\\frac{1}{2}\\right)^d\\to\\mathbb{R}^d$. We establish sufficient conditions on $\\psi$ and $\\omega$ such that the composition of a function in such a weighted Hilbert space with $\\psi$ yields a function in the Sobolev space $H_{\\mathrm{mix}}^{m}(\\mathbb{T}^d)$ of functions on the torus with mixed smoothness of natural order $m \\in \\mathbb{N}_{0}$. In this approach we adapt algorithms for the evaluation and reconstruction of multivariate trigonometric polynomials on the torus $\\mathbb{T}^d$ based on single and multiple reconstructing rank-$1$ lattices. Since in applications it may be difficult to choose a related function space, we make use of dimension incremental construction methods for sparse frequency sets. Various numerical tests confirm obtained theoretical results for the transformed methods.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Transformed rank-1 lattices for high-dimensional approximation\",\"authors\":\"Robert Nasdala, D. Potts\",\"doi\":\"10.1553/etna_vol53s239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an extension of Fourier approximation methods for multivariate functions defined on the torus $\\\\mathbb{T}^d$ to functions in a weighted Hilbert space $L_{2}(\\\\mathbb{R}^d, \\\\omega)$ via a multivariate change of variables $\\\\psi:\\\\left(-\\\\frac{1}{2},\\\\frac{1}{2}\\\\right)^d\\\\to\\\\mathbb{R}^d$. We establish sufficient conditions on $\\\\psi$ and $\\\\omega$ such that the composition of a function in such a weighted Hilbert space with $\\\\psi$ yields a function in the Sobolev space $H_{\\\\mathrm{mix}}^{m}(\\\\mathbb{T}^d)$ of functions on the torus with mixed smoothness of natural order $m \\\\in \\\\mathbb{N}_{0}$. In this approach we adapt algorithms for the evaluation and reconstruction of multivariate trigonometric polynomials on the torus $\\\\mathbb{T}^d$ based on single and multiple reconstructing rank-$1$ lattices. Since in applications it may be difficult to choose a related function space, we make use of dimension incremental construction methods for sparse frequency sets. Various numerical tests confirm obtained theoretical results for the transformed methods.\",\"PeriodicalId\":282695,\"journal\":{\"name\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/etna_vol53s239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol53s239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文描述了环面上多变量函数的傅里叶近似方法的一种推广 $\mathbb{T}^d$ 到加权希尔伯特空间中的函数 $L_{2}(\mathbb{R}^d, \omega)$ 通过多元变量变换 $\psi:\left(-\frac{1}{2},\frac{1}{2}\right)^d\to\mathbb{R}^d$. 我们建立充分条件 $\psi$ 和 $\omega$ 使得一个函数在这样一个加权希尔伯特空间中的复合 $\psi$ 得到Sobolev空间中的一个函数 $H_{\mathrm{mix}}^{m}(\mathbb{T}^d)$ 具有自然秩序的混合平滑环面上的函数 $m \in \mathbb{N}_{0}$. 在这种方法中,我们采用了环面上多元三角多项式的求值和重建算法 $\mathbb{T}^d$ 基于单次和多次重构秩-$1$ 格子。由于在应用中可能难以选择相关的函数空间,我们对稀疏频率集采用了维数增量构造方法。各种数值试验验证了所得到的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transformed rank-1 lattices for high-dimensional approximation
This paper describes an extension of Fourier approximation methods for multivariate functions defined on the torus $\mathbb{T}^d$ to functions in a weighted Hilbert space $L_{2}(\mathbb{R}^d, \omega)$ via a multivariate change of variables $\psi:\left(-\frac{1}{2},\frac{1}{2}\right)^d\to\mathbb{R}^d$. We establish sufficient conditions on $\psi$ and $\omega$ such that the composition of a function in such a weighted Hilbert space with $\psi$ yields a function in the Sobolev space $H_{\mathrm{mix}}^{m}(\mathbb{T}^d)$ of functions on the torus with mixed smoothness of natural order $m \in \mathbb{N}_{0}$. In this approach we adapt algorithms for the evaluation and reconstruction of multivariate trigonometric polynomials on the torus $\mathbb{T}^d$ based on single and multiple reconstructing rank-$1$ lattices. Since in applications it may be difficult to choose a related function space, we make use of dimension incremental construction methods for sparse frequency sets. Various numerical tests confirm obtained theoretical results for the transformed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信