基于滑动窗口方法的深度长短期记忆网络在城市热分析中的应用

Ling Li, Sida Dai, Zhi-Wei Cao
{"title":"基于滑动窗口方法的深度长短期记忆网络在城市热分析中的应用","authors":"Ling Li, Sida Dai, Zhi-Wei Cao","doi":"10.1109/ICCChinaW.2019.8849965","DOIUrl":null,"url":null,"abstract":"The visualization of urban thermal analysis is a prevalent topic in the establishment of smart cities. With the popularity of mobile devices, large volumes of data about people and their locations are gradually accumulating at mobile base stations. In this study, we used such call details records (CDR) and long short-term memory (LSTM) networks—a kind of recurrent neural network (RNN) —to predict the future traffic of a base station. By implementing gate mechanism, the LSTM can solve the problem of exploding and vanishing gradients of ordinary RNNs. We use a sliding-window approach to transform the problem of time series forecasting into a supervised learning problem. Then, we use the proposed deep LSTM network to model the traffic of base stations, which enables the prediction of future traffic and the generation of the heat map of a city. The method we presented can decrease the root mean square error (RMSE) of the predicted access time down to 23.34 minutes per hour per base station.","PeriodicalId":252172,"journal":{"name":"2019 IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Deep Long Short-term Memory (LSTM) Network with Sliding-window Approach in Urban Thermal Analysis\",\"authors\":\"Ling Li, Sida Dai, Zhi-Wei Cao\",\"doi\":\"10.1109/ICCChinaW.2019.8849965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The visualization of urban thermal analysis is a prevalent topic in the establishment of smart cities. With the popularity of mobile devices, large volumes of data about people and their locations are gradually accumulating at mobile base stations. In this study, we used such call details records (CDR) and long short-term memory (LSTM) networks—a kind of recurrent neural network (RNN) —to predict the future traffic of a base station. By implementing gate mechanism, the LSTM can solve the problem of exploding and vanishing gradients of ordinary RNNs. We use a sliding-window approach to transform the problem of time series forecasting into a supervised learning problem. Then, we use the proposed deep LSTM network to model the traffic of base stations, which enables the prediction of future traffic and the generation of the heat map of a city. The method we presented can decrease the root mean square error (RMSE) of the predicted access time down to 23.34 minutes per hour per base station.\",\"PeriodicalId\":252172,\"journal\":{\"name\":\"2019 IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops)\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCChinaW.2019.8849965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCChinaW.2019.8849965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

城市热分析的可视化是智慧城市建设中的一个热门话题。随着移动设备的普及,大量的人员和位置数据在移动基站中逐渐积累。在本研究中,我们使用这种呼叫详细记录(CDR)和长短期记忆(LSTM)网络(一种循环神经网络(RNN))来预测基站的未来流量。通过实现门机制,LSTM可以解决普通rnn的梯度爆炸和消失问题。我们使用滑动窗口方法将时间序列预测问题转化为监督学习问题。然后,我们使用所提出的深度LSTM网络对基站的流量进行建模,从而实现对未来流量的预测和城市热图的生成。我们提出的方法可以将每个基站的预测接入时间的均方根误差(RMSE)降低到23.34分钟/小时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Long Short-term Memory (LSTM) Network with Sliding-window Approach in Urban Thermal Analysis
The visualization of urban thermal analysis is a prevalent topic in the establishment of smart cities. With the popularity of mobile devices, large volumes of data about people and their locations are gradually accumulating at mobile base stations. In this study, we used such call details records (CDR) and long short-term memory (LSTM) networks—a kind of recurrent neural network (RNN) —to predict the future traffic of a base station. By implementing gate mechanism, the LSTM can solve the problem of exploding and vanishing gradients of ordinary RNNs. We use a sliding-window approach to transform the problem of time series forecasting into a supervised learning problem. Then, we use the proposed deep LSTM network to model the traffic of base stations, which enables the prediction of future traffic and the generation of the heat map of a city. The method we presented can decrease the root mean square error (RMSE) of the predicted access time down to 23.34 minutes per hour per base station.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信