基于改进卡尔曼滤波的状态递归多层感知器训练方法

Deniz Erdoğmuş, Justin C. Sanchez, J. Príncipe
{"title":"基于改进卡尔曼滤波的状态递归多层感知器训练方法","authors":"Deniz Erdoğmuş, Justin C. Sanchez, J. Príncipe","doi":"10.1109/NNSP.2002.1030033","DOIUrl":null,"url":null,"abstract":"Kalman filter based training algorithms for recurrent neural networks provide a clever alternative to the standard backpropagation in time. However, these algorithms do not take into account the optimization of the hidden state variables of the recurrent network. In addition, their formulation requires Jacobian evaluations over the entire network, adding to their computational complexity. We propose a spatial-temporal extended Kalman filter algorithm for training recurrent neural network weights and internal states. This new formulation also reduces the computational complexity of Jacobian evaluations drastically by decoupling the gradients of each layer. Monte Carlo comparisons with backpropagation through time point out the robust and fast convergence of the algorithm.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Modified Kalman filter based method for training state-recurrent multilayer perceptrons\",\"authors\":\"Deniz Erdoğmuş, Justin C. Sanchez, J. Príncipe\",\"doi\":\"10.1109/NNSP.2002.1030033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kalman filter based training algorithms for recurrent neural networks provide a clever alternative to the standard backpropagation in time. However, these algorithms do not take into account the optimization of the hidden state variables of the recurrent network. In addition, their formulation requires Jacobian evaluations over the entire network, adding to their computational complexity. We propose a spatial-temporal extended Kalman filter algorithm for training recurrent neural network weights and internal states. This new formulation also reduces the computational complexity of Jacobian evaluations drastically by decoupling the gradients of each layer. Monte Carlo comparisons with backpropagation through time point out the robust and fast convergence of the algorithm.\",\"PeriodicalId\":117945,\"journal\":{\"name\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2002.1030033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于卡尔曼滤波的递归神经网络训练算法为标准的时间反向传播提供了一种聪明的选择。然而,这些算法没有考虑到循环网络中隐藏状态变量的优化问题。此外,它们的公式需要在整个网络上进行雅可比矩阵计算,这增加了它们的计算复杂性。我们提出了一种用于训练递归神经网络权值和内部状态的时空扩展卡尔曼滤波算法。这个新公式通过解耦每层的梯度,大大降低了雅可比矩阵计算的复杂度。通过蒙特卡罗与时间反向传播的比较表明了该算法的鲁棒性和快速收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified Kalman filter based method for training state-recurrent multilayer perceptrons
Kalman filter based training algorithms for recurrent neural networks provide a clever alternative to the standard backpropagation in time. However, these algorithms do not take into account the optimization of the hidden state variables of the recurrent network. In addition, their formulation requires Jacobian evaluations over the entire network, adding to their computational complexity. We propose a spatial-temporal extended Kalman filter algorithm for training recurrent neural network weights and internal states. This new formulation also reduces the computational complexity of Jacobian evaluations drastically by decoupling the gradients of each layer. Monte Carlo comparisons with backpropagation through time point out the robust and fast convergence of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信