Charith Wickramaarachchi, R. Kannan, C. Chelmis, V. Prasanna
{"title":"向安全智能电网推进:针对智能欺骗的保护建议","authors":"Charith Wickramaarachchi, R. Kannan, C. Chelmis, V. Prasanna","doi":"10.1109/ISGT.2017.8086001","DOIUrl":null,"url":null,"abstract":"Protecting the integrity of state estimates that inform the physical state of a power transmission network is vital for the safe operation. Existing methods to protect the critical state estimates in smart-grid against data spoofing attacks assume a static set of critical buses. Instead, we propose a generalized optimal protection scheme based on a prize-collecting Steiner tree formulation that captures the criticality of buses and protection cost. We argue that the criticality of buses can change over time, and present a set of optimal schemes for adaptive protection against data spoofing attacks in smart grids. Next, we note that such optimal schemes are computationally intractable and propose heuristics with polynomial time complexity. We evaluate the proposed protection schemes using simulations on publicly available transmission network datasets. Simulation results show that the proposed heuristics closely approximate the optimal results while being able to scale for large transmission networks.","PeriodicalId":296398,"journal":{"name":"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"PReSS towards a secure smart grid: Protection recommendations against smart spoofing\",\"authors\":\"Charith Wickramaarachchi, R. Kannan, C. Chelmis, V. Prasanna\",\"doi\":\"10.1109/ISGT.2017.8086001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protecting the integrity of state estimates that inform the physical state of a power transmission network is vital for the safe operation. Existing methods to protect the critical state estimates in smart-grid against data spoofing attacks assume a static set of critical buses. Instead, we propose a generalized optimal protection scheme based on a prize-collecting Steiner tree formulation that captures the criticality of buses and protection cost. We argue that the criticality of buses can change over time, and present a set of optimal schemes for adaptive protection against data spoofing attacks in smart grids. Next, we note that such optimal schemes are computationally intractable and propose heuristics with polynomial time complexity. We evaluate the proposed protection schemes using simulations on publicly available transmission network datasets. Simulation results show that the proposed heuristics closely approximate the optimal results while being able to scale for large transmission networks.\",\"PeriodicalId\":296398,\"journal\":{\"name\":\"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGT.2017.8086001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT.2017.8086001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PReSS towards a secure smart grid: Protection recommendations against smart spoofing
Protecting the integrity of state estimates that inform the physical state of a power transmission network is vital for the safe operation. Existing methods to protect the critical state estimates in smart-grid against data spoofing attacks assume a static set of critical buses. Instead, we propose a generalized optimal protection scheme based on a prize-collecting Steiner tree formulation that captures the criticality of buses and protection cost. We argue that the criticality of buses can change over time, and present a set of optimal schemes for adaptive protection against data spoofing attacks in smart grids. Next, we note that such optimal schemes are computationally intractable and propose heuristics with polynomial time complexity. We evaluate the proposed protection schemes using simulations on publicly available transmission network datasets. Simulation results show that the proposed heuristics closely approximate the optimal results while being able to scale for large transmission networks.