从情境经验中抽象非情境行为:移动机器人实验

A. Pipe, Y. Jin, Terence C. Fogarty, Alan F. T. Winfield
{"title":"从情境经验中抽象非情境行为:移动机器人实验","authors":"A. Pipe, Y. Jin, Terence C. Fogarty, Alan F. T. Winfield","doi":"10.1109/ISIC.1995.525097","DOIUrl":null,"url":null,"abstract":"We present the first experimental results from a new hybrid learning architecture for maze solving in mobile robotics which attempts to draw on the best ideas from the fields of both \"traditional\" AI world modelling and behaviour-based robotics. It can operate in both situated geocentric, and nonsituated egocentric modes. In situated mode it learns a \"fuzzy cognitive map\" of its environment in order to discover a near-optimal path between start and goal position of a particular maze. It is capable of abstracting nonsituated behaviours from a number of such situated learning experiences provided that they share some common features. Then in nonsituated mode it uses the acquired behaviours to navigate through new mazes using only local information.","PeriodicalId":219623,"journal":{"name":"Proceedings of Tenth International Symposium on Intelligent Control","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Abstracting non-situated behaviours from situated experiences: an experiment in mobile robotics\",\"authors\":\"A. Pipe, Y. Jin, Terence C. Fogarty, Alan F. T. Winfield\",\"doi\":\"10.1109/ISIC.1995.525097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the first experimental results from a new hybrid learning architecture for maze solving in mobile robotics which attempts to draw on the best ideas from the fields of both \\\"traditional\\\" AI world modelling and behaviour-based robotics. It can operate in both situated geocentric, and nonsituated egocentric modes. In situated mode it learns a \\\"fuzzy cognitive map\\\" of its environment in order to discover a near-optimal path between start and goal position of a particular maze. It is capable of abstracting nonsituated behaviours from a number of such situated learning experiences provided that they share some common features. Then in nonsituated mode it uses the acquired behaviours to navigate through new mazes using only local information.\",\"PeriodicalId\":219623,\"journal\":{\"name\":\"Proceedings of Tenth International Symposium on Intelligent Control\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Tenth International Symposium on Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.1995.525097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Tenth International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1995.525097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们展示了移动机器人中迷宫解决的新混合学习架构的第一个实验结果,该架构试图从“传统”人工智能世界建模和基于行为的机器人领域汲取最佳思想。它既可以在地理中心模式下运作,也可以在非地理中心模式下运作。在定位模式下,它学习环境的“模糊认知地图”,以便在特定迷宫的起点和目标位置之间找到接近最优的路径。它能够从许多这样的情境学习经验中抽象出非情境行为,只要它们有一些共同的特征。然后在非定位模式下,它使用获得的行为来导航通过新的迷宫,只使用本地信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abstracting non-situated behaviours from situated experiences: an experiment in mobile robotics
We present the first experimental results from a new hybrid learning architecture for maze solving in mobile robotics which attempts to draw on the best ideas from the fields of both "traditional" AI world modelling and behaviour-based robotics. It can operate in both situated geocentric, and nonsituated egocentric modes. In situated mode it learns a "fuzzy cognitive map" of its environment in order to discover a near-optimal path between start and goal position of a particular maze. It is capable of abstracting nonsituated behaviours from a number of such situated learning experiences provided that they share some common features. Then in nonsituated mode it uses the acquired behaviours to navigate through new mazes using only local information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信