水下测量视频中肾病检测的马赛克

Ken Sooknanan, J. Doyle, C. Lordan, James Wilson, A. Kokaram, D. Corrigan
{"title":"水下测量视频中肾病检测的马赛克","authors":"Ken Sooknanan, J. Doyle, C. Lordan, James Wilson, A. Kokaram, D. Corrigan","doi":"10.1109/OCEANS.2014.7003142","DOIUrl":null,"url":null,"abstract":"Harvesting the commercially significant lobster, Nephrops norvegicus, is a multimillion dollar industry in Europe. Stock assessment is essential for maintaining this activity but it is conducted by manually inspecting hours of underwater surveillance videos. To improve this tedious process, we propose an automated procedure. This procedure uses mosaics for detecting the Nephrops, which improves visibility and reduces the tedious video inspection process to the browsing of a single image. In addition to this novel application approach, key contributions are made for handling the difficult lighting conditions in these kinds of videos. Mosaics are built using 1-10 minutes of footage and candidate Nephrops regions are selected using image segmentation based on local image contrast and colour features. A K-Nearest Neighbour classifier is then used to select the respective Nephrops from these candidate regions. Our final decision accuracy at 87.5% recall and precision shows a corresponding 31.5% and 79.4% improvement compared with previous work [1].","PeriodicalId":368693,"journal":{"name":"2014 Oceans - St. John's","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mosaics for Nephrops detection in underwater survey videos\",\"authors\":\"Ken Sooknanan, J. Doyle, C. Lordan, James Wilson, A. Kokaram, D. Corrigan\",\"doi\":\"10.1109/OCEANS.2014.7003142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Harvesting the commercially significant lobster, Nephrops norvegicus, is a multimillion dollar industry in Europe. Stock assessment is essential for maintaining this activity but it is conducted by manually inspecting hours of underwater surveillance videos. To improve this tedious process, we propose an automated procedure. This procedure uses mosaics for detecting the Nephrops, which improves visibility and reduces the tedious video inspection process to the browsing of a single image. In addition to this novel application approach, key contributions are made for handling the difficult lighting conditions in these kinds of videos. Mosaics are built using 1-10 minutes of footage and candidate Nephrops regions are selected using image segmentation based on local image contrast and colour features. A K-Nearest Neighbour classifier is then used to select the respective Nephrops from these candidate regions. Our final decision accuracy at 87.5% recall and precision shows a corresponding 31.5% and 79.4% improvement compared with previous work [1].\",\"PeriodicalId\":368693,\"journal\":{\"name\":\"2014 Oceans - St. John's\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Oceans - St. John's\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANS.2014.7003142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Oceans - St. John's","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.2014.7003142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在欧洲,捕捞具有重要商业价值的龙虾是一项价值数百万美元的产业。种群评估对于维持这一活动至关重要,但它是通过人工检查数小时的水下监视录像来进行的。为了改进这个繁琐的过程,我们提出了一个自动化的程序。该程序使用马赛克来检测肾结石,这提高了可见性,并减少了繁琐的视频检查过程,只需浏览单个图像。除了这种新颖的应用方法外,还为处理这些类型视频中的困难照明条件做出了关键贡献。使用1-10分钟的镜头构建马赛克,并使用基于局部图像对比度和颜色特征的图像分割选择候选肾区。然后使用k近邻分类器从这些候选区域中选择相应的肾点。我们最终的决策准确率为87.5%,查全率和查准率分别比之前的工作[1]提高了31.5%和79.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mosaics for Nephrops detection in underwater survey videos
Harvesting the commercially significant lobster, Nephrops norvegicus, is a multimillion dollar industry in Europe. Stock assessment is essential for maintaining this activity but it is conducted by manually inspecting hours of underwater surveillance videos. To improve this tedious process, we propose an automated procedure. This procedure uses mosaics for detecting the Nephrops, which improves visibility and reduces the tedious video inspection process to the browsing of a single image. In addition to this novel application approach, key contributions are made for handling the difficult lighting conditions in these kinds of videos. Mosaics are built using 1-10 minutes of footage and candidate Nephrops regions are selected using image segmentation based on local image contrast and colour features. A K-Nearest Neighbour classifier is then used to select the respective Nephrops from these candidate regions. Our final decision accuracy at 87.5% recall and precision shows a corresponding 31.5% and 79.4% improvement compared with previous work [1].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信