R. Jain, Geetika Dhand, Kavita Sheoran, S. Malik, Nishtha Jatana
{"title":"基于区块链的证书验证","authors":"R. Jain, Geetika Dhand, Kavita Sheoran, S. Malik, Nishtha Jatana","doi":"10.54216/fpa.120204","DOIUrl":null,"url":null,"abstract":"Certificate management is a tedious task for any university or any other organization. These schemes impose problems in Public Key Infrastructure (PKI). Checking the validity and preserving the security of these documents is of utmost importance. In this work, we have devised a blockchain-based solution for preventing malfunctioning in certificate validation which is an important step for any university. Each certificate is uploaded in its hash format and is stored using blockchain. The hashes are stored in unique transactions in nodes, which are deployed on a private network. Using the SHA-256 hashing algorithm, the certificates are uploaded into the system and can be viewed by anyone with the right credentials. Due to the usage of blockchain technology, the certificates are stored in a decentralized manner, which ensures there is no central point of failure. Any changes in the uploaded document need to be validated by other nodes. This paper also improvises that when certificate uploading is required new nodes are added, instead of modifying the past blocks. This work provides a very user-friendly app where any user with the right credentials can upload documents. In this work, digitized documents are stored using Inter Planetary File System (IPFS) which is distributed method of storage. Our theoretical analysis proves that it is a user-friendly application with the security of blockchain technology in partnership with IPFS. Only the issuer can upload documents and others can only view them. Using our proposed solution, problem of malicious certificates can be tackled with E-certification. The proposed method solves all the issues of storing, validating, and sharing documents. Chaotic Map technique is used in hash generation which is quite simple to implement. The proposed approach Chaotic Key based Certificate validation (CK-Cert) provides a hassle-free solution for certificate managements since it better manages the block size as compared to previously proposed techniques (PBCert and CertChain) as discussed with the help of graphs.","PeriodicalId":269527,"journal":{"name":"Fusion: Practice and Applications","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blockchain based Certificate Validation\",\"authors\":\"R. Jain, Geetika Dhand, Kavita Sheoran, S. Malik, Nishtha Jatana\",\"doi\":\"10.54216/fpa.120204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Certificate management is a tedious task for any university or any other organization. These schemes impose problems in Public Key Infrastructure (PKI). Checking the validity and preserving the security of these documents is of utmost importance. In this work, we have devised a blockchain-based solution for preventing malfunctioning in certificate validation which is an important step for any university. Each certificate is uploaded in its hash format and is stored using blockchain. The hashes are stored in unique transactions in nodes, which are deployed on a private network. Using the SHA-256 hashing algorithm, the certificates are uploaded into the system and can be viewed by anyone with the right credentials. Due to the usage of blockchain technology, the certificates are stored in a decentralized manner, which ensures there is no central point of failure. Any changes in the uploaded document need to be validated by other nodes. This paper also improvises that when certificate uploading is required new nodes are added, instead of modifying the past blocks. This work provides a very user-friendly app where any user with the right credentials can upload documents. In this work, digitized documents are stored using Inter Planetary File System (IPFS) which is distributed method of storage. Our theoretical analysis proves that it is a user-friendly application with the security of blockchain technology in partnership with IPFS. Only the issuer can upload documents and others can only view them. Using our proposed solution, problem of malicious certificates can be tackled with E-certification. The proposed method solves all the issues of storing, validating, and sharing documents. Chaotic Map technique is used in hash generation which is quite simple to implement. The proposed approach Chaotic Key based Certificate validation (CK-Cert) provides a hassle-free solution for certificate managements since it better manages the block size as compared to previously proposed techniques (PBCert and CertChain) as discussed with the help of graphs.\",\"PeriodicalId\":269527,\"journal\":{\"name\":\"Fusion: Practice and Applications\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fusion: Practice and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54216/fpa.120204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion: Practice and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/fpa.120204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Certificate management is a tedious task for any university or any other organization. These schemes impose problems in Public Key Infrastructure (PKI). Checking the validity and preserving the security of these documents is of utmost importance. In this work, we have devised a blockchain-based solution for preventing malfunctioning in certificate validation which is an important step for any university. Each certificate is uploaded in its hash format and is stored using blockchain. The hashes are stored in unique transactions in nodes, which are deployed on a private network. Using the SHA-256 hashing algorithm, the certificates are uploaded into the system and can be viewed by anyone with the right credentials. Due to the usage of blockchain technology, the certificates are stored in a decentralized manner, which ensures there is no central point of failure. Any changes in the uploaded document need to be validated by other nodes. This paper also improvises that when certificate uploading is required new nodes are added, instead of modifying the past blocks. This work provides a very user-friendly app where any user with the right credentials can upload documents. In this work, digitized documents are stored using Inter Planetary File System (IPFS) which is distributed method of storage. Our theoretical analysis proves that it is a user-friendly application with the security of blockchain technology in partnership with IPFS. Only the issuer can upload documents and others can only view them. Using our proposed solution, problem of malicious certificates can be tackled with E-certification. The proposed method solves all the issues of storing, validating, and sharing documents. Chaotic Map technique is used in hash generation which is quite simple to implement. The proposed approach Chaotic Key based Certificate validation (CK-Cert) provides a hassle-free solution for certificate managements since it better manages the block size as compared to previously proposed techniques (PBCert and CertChain) as discussed with the help of graphs.