基于Hebbian学习的语音信号特征滤波自动性别识别

R. Fagundes, A.A.C. Martins, F. Castro, M. C. F. D. Castro
{"title":"基于Hebbian学习的语音信号特征滤波自动性别识别","authors":"R. Fagundes, A.A.C. Martins, F. Castro, M. C. F. D. Castro","doi":"10.1109/SBRN.2002.1181476","DOIUrl":null,"url":null,"abstract":"This work presents an automatic gender identification algorithm based on eigenfiltering. A maximum eigenfilter is implemented by means of an artificial neural network (ANN) trained via generalized Hebbian learning. The eigenfilter uses the principal component analysis to perform maximum information extraction from the speech signal, which enhances correlated information and improves the pattern analysis. Also, a well known speech processing technique is applied, the mel-frequency cepstral coefficients. This technique is a classical approach for speech feature extraction, and it is a very efficient way to represent physiological voice parameters. The pattern classification uses a radial basis function neural network. Experimental results have shown that the identification algorithm overall performance was widely increased by the eigenfiltering process.","PeriodicalId":157186,"journal":{"name":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","volume":"334 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Automatic gender identification by speech signal using eigenfiltering based on Hebbian learning\",\"authors\":\"R. Fagundes, A.A.C. Martins, F. Castro, M. C. F. D. Castro\",\"doi\":\"10.1109/SBRN.2002.1181476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents an automatic gender identification algorithm based on eigenfiltering. A maximum eigenfilter is implemented by means of an artificial neural network (ANN) trained via generalized Hebbian learning. The eigenfilter uses the principal component analysis to perform maximum information extraction from the speech signal, which enhances correlated information and improves the pattern analysis. Also, a well known speech processing technique is applied, the mel-frequency cepstral coefficients. This technique is a classical approach for speech feature extraction, and it is a very efficient way to represent physiological voice parameters. The pattern classification uses a radial basis function neural network. Experimental results have shown that the identification algorithm overall performance was widely increased by the eigenfiltering process.\",\"PeriodicalId\":157186,\"journal\":{\"name\":\"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.\",\"volume\":\"334 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBRN.2002.1181476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2002.1181476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种基于特征滤波的性别自动识别算法。利用广义Hebbian学习训练的人工神经网络实现了最大特征滤波器。特征滤波器利用主成分分析对语音信号进行最大程度的信息提取,增强了相关信息,提高了模式分析的精度。此外,还应用了一种著名的语音处理技术,即mel-frequency倒谱系数。该技术是语音特征提取的经典方法,是一种非常有效的语音生理参数表示方法。模式分类采用径向基函数神经网络。实验结果表明,采用特征滤波处理后,识别算法的整体性能得到了较大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic gender identification by speech signal using eigenfiltering based on Hebbian learning
This work presents an automatic gender identification algorithm based on eigenfiltering. A maximum eigenfilter is implemented by means of an artificial neural network (ANN) trained via generalized Hebbian learning. The eigenfilter uses the principal component analysis to perform maximum information extraction from the speech signal, which enhances correlated information and improves the pattern analysis. Also, a well known speech processing technique is applied, the mel-frequency cepstral coefficients. This technique is a classical approach for speech feature extraction, and it is a very efficient way to represent physiological voice parameters. The pattern classification uses a radial basis function neural network. Experimental results have shown that the identification algorithm overall performance was widely increased by the eigenfiltering process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信