婴儿机器人多分辨率智能控制器

J. Albus, A. Lacaze, A. Meystel
{"title":"婴儿机器人多分辨率智能控制器","authors":"J. Albus, A. Lacaze, A. Meystel","doi":"10.1109/ISIC.1995.525060","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm of unsupervised learning for applications in robotics. Minimum initial knowledge is presumed (\"bootstrap knowledge\"). The learning system uses the newly arrived information to extract rules of motion and construct the world representation. The concept of recursive generalization is explored as the main tool of rule extraction and knowledge organization. The experiment in learning is described based upon simulation of a 2D and a 3D mobile system.","PeriodicalId":219623,"journal":{"name":"Proceedings of Tenth International Symposium on Intelligent Control","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Multiresolutional intelligent controller for baby robot\",\"authors\":\"J. Albus, A. Lacaze, A. Meystel\",\"doi\":\"10.1109/ISIC.1995.525060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an algorithm of unsupervised learning for applications in robotics. Minimum initial knowledge is presumed (\\\"bootstrap knowledge\\\"). The learning system uses the newly arrived information to extract rules of motion and construct the world representation. The concept of recursive generalization is explored as the main tool of rule extraction and knowledge organization. The experiment in learning is described based upon simulation of a 2D and a 3D mobile system.\",\"PeriodicalId\":219623,\"journal\":{\"name\":\"Proceedings of Tenth International Symposium on Intelligent Control\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Tenth International Symposium on Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.1995.525060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Tenth International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1995.525060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

提出了一种应用于机器人领域的无监督学习算法。假定最小初始知识(“自举知识”)。学习系统利用新获得的信息提取运动规则并构建世界表征。探讨了递归泛化概念作为规则抽取和知识组织的主要工具。本文描述了基于二维和三维移动系统仿真的学习实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiresolutional intelligent controller for baby robot
This paper presents an algorithm of unsupervised learning for applications in robotics. Minimum initial knowledge is presumed ("bootstrap knowledge"). The learning system uses the newly arrived information to extract rules of motion and construct the world representation. The concept of recursive generalization is explored as the main tool of rule extraction and knowledge organization. The experiment in learning is described based upon simulation of a 2D and a 3D mobile system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信