使用集成方法和BERT检索比较参数

V. Chekalina, A. Panchenko
{"title":"使用集成方法和BERT检索比较参数","authors":"V. Chekalina, A. Panchenko","doi":"10.48550/arXiv.2305.01513","DOIUrl":null,"url":null,"abstract":"In this paper, we present a submission to the Touche lab's Task 2 on Argument Retrieval for Comparative Questions. Our team Katana supplies several approaches based on decision tree ensembles algorithms to rank comparative documents in accordance with their relevance and argumentative support. We use PyTerrier library to apply ensembles models to a ranking problem, considering statistical text features and features based on comparative structures. We also employ large contextualized language modelling techniques, such as BERT, to solve the proposed ranking task. To merge this technique with ranking modelling, we leverage neural ranking library OpenNIR. Our systems substantially outperforming the proposed baseline and scored first in relevance and second in quality according to the official metrics of the competition (for measure NDCG@5 score). Presented models could help to improve the performance of processing comparative queries in information retrieval and dialogue systems.","PeriodicalId":232729,"journal":{"name":"Conference and Labs of the Evaluation Forum","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Retrieving Comparative Arguments using Ensemble Methods and BERT\",\"authors\":\"V. Chekalina, A. Panchenko\",\"doi\":\"10.48550/arXiv.2305.01513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a submission to the Touche lab's Task 2 on Argument Retrieval for Comparative Questions. Our team Katana supplies several approaches based on decision tree ensembles algorithms to rank comparative documents in accordance with their relevance and argumentative support. We use PyTerrier library to apply ensembles models to a ranking problem, considering statistical text features and features based on comparative structures. We also employ large contextualized language modelling techniques, such as BERT, to solve the proposed ranking task. To merge this technique with ranking modelling, we leverage neural ranking library OpenNIR. Our systems substantially outperforming the proposed baseline and scored first in relevance and second in quality according to the official metrics of the competition (for measure NDCG@5 score). Presented models could help to improve the performance of processing comparative queries in information retrieval and dialogue systems.\",\"PeriodicalId\":232729,\"journal\":{\"name\":\"Conference and Labs of the Evaluation Forum\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference and Labs of the Evaluation Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2305.01513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference and Labs of the Evaluation Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.01513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提交了一份关于比较问题的论点检索的任务2。我们的团队Katana提供了几种基于决策树集成算法的方法,根据它们的相关性和论证支持对比较文档进行排名。我们使用PyTerrier库将集成模型应用于排序问题,考虑统计文本特征和基于比较结构的特征。我们还采用大型上下文化语言建模技术,如BERT,来解决提出的排名任务。为了将该技术与排名建模相结合,我们利用了神经排名库OpenNIR。我们的系统大大超过了建议的基线,根据竞赛的官方指标(衡量NDCG@5得分),在相关性方面得分第一,在质量方面得分第二。所提出的模型有助于提高信息检索和对话系统中比较查询的处理性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Retrieving Comparative Arguments using Ensemble Methods and BERT
In this paper, we present a submission to the Touche lab's Task 2 on Argument Retrieval for Comparative Questions. Our team Katana supplies several approaches based on decision tree ensembles algorithms to rank comparative documents in accordance with their relevance and argumentative support. We use PyTerrier library to apply ensembles models to a ranking problem, considering statistical text features and features based on comparative structures. We also employ large contextualized language modelling techniques, such as BERT, to solve the proposed ranking task. To merge this technique with ranking modelling, we leverage neural ranking library OpenNIR. Our systems substantially outperforming the proposed baseline and scored first in relevance and second in quality according to the official metrics of the competition (for measure NDCG@5 score). Presented models could help to improve the performance of processing comparative queries in information retrieval and dialogue systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信