MLAA和MLACF的缺陷

K. Salvo, M. Defrise
{"title":"MLAA和MLACF的缺陷","authors":"K. Salvo, M. Defrise","doi":"10.1109/NSSMIC.2016.8069555","DOIUrl":null,"url":null,"abstract":"In time-of-flight (TOF) positron emission tomography (PET) imaging, it is possible to correct for attenuation using only the TOF-PET data. Currently two main iterative algorithms exist for this purpose: MLAA [1] and MLACF [2]. In addition to reconstructing the activity image A, MLAA reconstructs the attenuation map μ, whereas MLACF reconstructs the attenuation correction factors a. While implementing MLAA and MLACF, one has to be careful. Possible pitfalls are: (i) obtaining slice dependent scale factors, (ii) converging to local maxima, (iii) obtaining unbounded estimates, (iv) dividing by zero, and (v) using an incorrect or inefficient update scheme. First we will summarize and expand some previous results of MLAA & MLACF convergence and uniqueness issues. Next we will use this knowledge to understand the pitfalls, while giving details on the implementation to avoid them.","PeriodicalId":184587,"journal":{"name":"2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pitfalls in MLAA and MLACF\",\"authors\":\"K. Salvo, M. Defrise\",\"doi\":\"10.1109/NSSMIC.2016.8069555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In time-of-flight (TOF) positron emission tomography (PET) imaging, it is possible to correct for attenuation using only the TOF-PET data. Currently two main iterative algorithms exist for this purpose: MLAA [1] and MLACF [2]. In addition to reconstructing the activity image A, MLAA reconstructs the attenuation map μ, whereas MLACF reconstructs the attenuation correction factors a. While implementing MLAA and MLACF, one has to be careful. Possible pitfalls are: (i) obtaining slice dependent scale factors, (ii) converging to local maxima, (iii) obtaining unbounded estimates, (iv) dividing by zero, and (v) using an incorrect or inefficient update scheme. First we will summarize and expand some previous results of MLAA & MLACF convergence and uniqueness issues. Next we will use this knowledge to understand the pitfalls, while giving details on the implementation to avoid them.\",\"PeriodicalId\":184587,\"journal\":{\"name\":\"2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2016.8069555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2016.8069555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在飞行时间(TOF)正电子发射断层扫描(PET)成像中,仅使用TOF-PET数据就可以校正衰减。目前主要有两种迭代算法:MLAA[1]和MLACF[2]。除了重建活动图像A外,MLAA还重建了衰减图μ,而MLACF重建了衰减校正因子A。在实现MLAA和MLACF时,必须小心。可能的缺陷是:(i)获得与切片相关的尺度因子,(ii)收敛到局部最大值,(iii)获得无界估计,(iv)除以零,以及(v)使用不正确或低效的更新方案。首先,我们将对MLAA和MLACF的收敛性和唯一性问题进行总结和扩展。接下来,我们将使用这些知识来理解陷阱,同时提供有关实现的详细信息以避免它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pitfalls in MLAA and MLACF
In time-of-flight (TOF) positron emission tomography (PET) imaging, it is possible to correct for attenuation using only the TOF-PET data. Currently two main iterative algorithms exist for this purpose: MLAA [1] and MLACF [2]. In addition to reconstructing the activity image A, MLAA reconstructs the attenuation map μ, whereas MLACF reconstructs the attenuation correction factors a. While implementing MLAA and MLACF, one has to be careful. Possible pitfalls are: (i) obtaining slice dependent scale factors, (ii) converging to local maxima, (iii) obtaining unbounded estimates, (iv) dividing by zero, and (v) using an incorrect or inefficient update scheme. First we will summarize and expand some previous results of MLAA & MLACF convergence and uniqueness issues. Next we will use this knowledge to understand the pitfalls, while giving details on the implementation to avoid them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信