M2(F2)和M2(F2[i])上的循环码和自对偶码

H. Sboui, A. Bouallègue, P. Solé
{"title":"M2(F2)和M2(F2[i])上的循环码和自对偶码","authors":"H. Sboui, A. Bouallègue, P. Solé","doi":"10.1109/MMS.2011.6068573","DOIUrl":null,"url":null,"abstract":"In this paper, we study cyclic self dual codes over the finite ring M<inf>2</inf>(F<inf>2</inf>) and M<inf>2</inf>(F<inf>2</inf>[i]) by analogy with the ℤ<inf>4</inf> case. We give the factorization of X<sup>7</sup> + 1 over M<inf>2</inf>(F<inf>2</inf>) and we propose a new factorization of X<sup>m</sup> + 1 over M<inf>2</inf>(F<inf>2</inf>[i]) for tow coprime polynomials.","PeriodicalId":176786,"journal":{"name":"2011 11th Mediterranean Microwave Symposium (MMS)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyclic codes and self-dual codes over M2(F2) and M2(F2[i])\",\"authors\":\"H. Sboui, A. Bouallègue, P. Solé\",\"doi\":\"10.1109/MMS.2011.6068573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study cyclic self dual codes over the finite ring M<inf>2</inf>(F<inf>2</inf>) and M<inf>2</inf>(F<inf>2</inf>[i]) by analogy with the ℤ<inf>4</inf> case. We give the factorization of X<sup>7</sup> + 1 over M<inf>2</inf>(F<inf>2</inf>) and we propose a new factorization of X<sup>m</sup> + 1 over M<inf>2</inf>(F<inf>2</inf>[i]) for tow coprime polynomials.\",\"PeriodicalId\":176786,\"journal\":{\"name\":\"2011 11th Mediterranean Microwave Symposium (MMS)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 11th Mediterranean Microwave Symposium (MMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMS.2011.6068573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 11th Mediterranean Microwave Symposium (MMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMS.2011.6068573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文通过类比研究了有限环M2(F2)和M2(F2[i])上的循环自对偶码。给出了X7 + 1 / M2(F2)的因式分解,并提出了双素数多项式Xm + 1 / M2(F2[i])的一种新的因式分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyclic codes and self-dual codes over M2(F2) and M2(F2[i])
In this paper, we study cyclic self dual codes over the finite ring M2(F2) and M2(F2[i]) by analogy with the ℤ4 case. We give the factorization of X7 + 1 over M2(F2) and we propose a new factorization of Xm + 1 over M2(F2[i]) for tow coprime polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信