{"title":"M2(F2)和M2(F2[i])上的循环码和自对偶码","authors":"H. Sboui, A. Bouallègue, P. Solé","doi":"10.1109/MMS.2011.6068573","DOIUrl":null,"url":null,"abstract":"In this paper, we study cyclic self dual codes over the finite ring M<inf>2</inf>(F<inf>2</inf>) and M<inf>2</inf>(F<inf>2</inf>[i]) by analogy with the ℤ<inf>4</inf> case. We give the factorization of X<sup>7</sup> + 1 over M<inf>2</inf>(F<inf>2</inf>) and we propose a new factorization of X<sup>m</sup> + 1 over M<inf>2</inf>(F<inf>2</inf>[i]) for tow coprime polynomials.","PeriodicalId":176786,"journal":{"name":"2011 11th Mediterranean Microwave Symposium (MMS)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyclic codes and self-dual codes over M2(F2) and M2(F2[i])\",\"authors\":\"H. Sboui, A. Bouallègue, P. Solé\",\"doi\":\"10.1109/MMS.2011.6068573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study cyclic self dual codes over the finite ring M<inf>2</inf>(F<inf>2</inf>) and M<inf>2</inf>(F<inf>2</inf>[i]) by analogy with the ℤ<inf>4</inf> case. We give the factorization of X<sup>7</sup> + 1 over M<inf>2</inf>(F<inf>2</inf>) and we propose a new factorization of X<sup>m</sup> + 1 over M<inf>2</inf>(F<inf>2</inf>[i]) for tow coprime polynomials.\",\"PeriodicalId\":176786,\"journal\":{\"name\":\"2011 11th Mediterranean Microwave Symposium (MMS)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 11th Mediterranean Microwave Symposium (MMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMS.2011.6068573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 11th Mediterranean Microwave Symposium (MMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMS.2011.6068573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cyclic codes and self-dual codes over M2(F2) and M2(F2[i])
In this paper, we study cyclic self dual codes over the finite ring M2(F2) and M2(F2[i]) by analogy with the ℤ4 case. We give the factorization of X7 + 1 over M2(F2) and we propose a new factorization of Xm + 1 over M2(F2[i]) for tow coprime polynomials.