在经济变量中产生创新

V. Leone, L. A. Leger
{"title":"在经济变量中产生创新","authors":"V. Leone, L. A. Leger","doi":"10.1080/17446540701748965","DOIUrl":null,"url":null,"abstract":"Stock prices should respond only to unpredictable components of economic news (‘innovations’) in efficient markets. While innovations used in empirical investigations of the economic underpinnings of stock market risk should at least satisfy this basic requirement, this may not guarantee satisfactory research results. Three methods of generating innovations are evaluated for a variety of economic variables. First differencing produces unsatisfactory, serially correlated innovations in general. Both ARIMA and Kalman Filter innovations are unpredictable, but in a further evaluation the component scores from Principal Components Analysis are regressed against economic innovations using PcGets. The results are far less noisy when Kalman Filter innovations are used.","PeriodicalId":345744,"journal":{"name":"Applied Financial Economics Letters","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Generating innovations in economic variables\",\"authors\":\"V. Leone, L. A. Leger\",\"doi\":\"10.1080/17446540701748965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stock prices should respond only to unpredictable components of economic news (‘innovations’) in efficient markets. While innovations used in empirical investigations of the economic underpinnings of stock market risk should at least satisfy this basic requirement, this may not guarantee satisfactory research results. Three methods of generating innovations are evaluated for a variety of economic variables. First differencing produces unsatisfactory, serially correlated innovations in general. Both ARIMA and Kalman Filter innovations are unpredictable, but in a further evaluation the component scores from Principal Components Analysis are regressed against economic innovations using PcGets. The results are far less noisy when Kalman Filter innovations are used.\",\"PeriodicalId\":345744,\"journal\":{\"name\":\"Applied Financial Economics Letters\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Financial Economics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17446540701748965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Financial Economics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17446540701748965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在有效市场中,股价应该只对经济新闻中不可预测的成分(“创新”)做出反应。虽然在股票市场风险的经济基础的实证调查中使用的创新至少应该满足这一基本要求,但这可能不能保证令人满意的研究结果。产生创新的三种方法是评估各种经济变量。一般来说,第一次差分产生的是不令人满意的、连续相关的创新。ARIMA和卡尔曼滤波器的创新都是不可预测的,但在进一步的评估中,主成分分析的成分得分使用PcGets对经济创新进行了回归。当使用卡尔曼滤波创新时,结果的噪声要小得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating innovations in economic variables
Stock prices should respond only to unpredictable components of economic news (‘innovations’) in efficient markets. While innovations used in empirical investigations of the economic underpinnings of stock market risk should at least satisfy this basic requirement, this may not guarantee satisfactory research results. Three methods of generating innovations are evaluated for a variety of economic variables. First differencing produces unsatisfactory, serially correlated innovations in general. Both ARIMA and Kalman Filter innovations are unpredictable, but in a further evaluation the component scores from Principal Components Analysis are regressed against economic innovations using PcGets. The results are far less noisy when Kalman Filter innovations are used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信