流形学习与降维方法中的预像问题

Omar Arif, P. Vela, W. Daley
{"title":"流形学习与降维方法中的预像问题","authors":"Omar Arif, P. Vela, W. Daley","doi":"10.1109/ICMLA.2010.146","DOIUrl":null,"url":null,"abstract":"Manifold learning and dimensional reduction methods provide a low dimensional embedding for a collection of training samples. These methods are based on the eigenvalue decomposition of the kernel matrix formed using the training samples. In [2] the embedding is extended to new test samples using the Nystrom approximation method. This paper addresses the pre-image problem for these methods, which is to find the mapping back from the embedding space to the input space for new test points. The relationship of these learning methods to kernel principal component analysis [6] and the connection of the out-of-sample problem to the pre-image problem [1] is used to provide the pre-image.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Pre-image Problem in Manifold Learning and Dimensional Reduction Methods\",\"authors\":\"Omar Arif, P. Vela, W. Daley\",\"doi\":\"10.1109/ICMLA.2010.146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manifold learning and dimensional reduction methods provide a low dimensional embedding for a collection of training samples. These methods are based on the eigenvalue decomposition of the kernel matrix formed using the training samples. In [2] the embedding is extended to new test samples using the Nystrom approximation method. This paper addresses the pre-image problem for these methods, which is to find the mapping back from the embedding space to the input space for new test points. The relationship of these learning methods to kernel principal component analysis [6] and the connection of the out-of-sample problem to the pre-image problem [1] is used to provide the pre-image.\",\"PeriodicalId\":336514,\"journal\":{\"name\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2010.146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

流形学习和降维方法为训练样本集合提供了低维嵌入。这些方法是基于训练样本形成的核矩阵的特征值分解。在[2]中,使用Nystrom近似方法将嵌入扩展到新的测试样本。本文解决了这些方法的预像问题,即找到新的测试点从嵌入空间到输入空间的映射。这些学习方法与核主成分分析[6]的关系以及样本外问题与预图像问题[1]的联系被用来提供预图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pre-image Problem in Manifold Learning and Dimensional Reduction Methods
Manifold learning and dimensional reduction methods provide a low dimensional embedding for a collection of training samples. These methods are based on the eigenvalue decomposition of the kernel matrix formed using the training samples. In [2] the embedding is extended to new test samples using the Nystrom approximation method. This paper addresses the pre-image problem for these methods, which is to find the mapping back from the embedding space to the input space for new test points. The relationship of these learning methods to kernel principal component analysis [6] and the connection of the out-of-sample problem to the pre-image problem [1] is used to provide the pre-image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信