细胞神经网络图像去模糊及其在显微镜中的应用

J.P. Miller, T. Roska, T. Szirányi, K. R. Crounse, L. Chua, L. Nemes
{"title":"细胞神经网络图像去模糊及其在显微镜中的应用","authors":"J.P. Miller, T. Roska, T. Szirányi, K. R. Crounse, L. Chua, L. Nemes","doi":"10.1109/CNNA.1994.381673","DOIUrl":null,"url":null,"abstract":"In this paper it is shown how the Cellular Neural Network (CNN) can be used to perform image and volume deblurring, with particular emphases on applications to microscopy. We discuss the basic linear theory of the CNN including issues of stability and template size. It is observed that a CNN with a small template can be used to implement an Infinite Impulse Response filter. It is then shown how general deblurring problems can be addressed with a CNN when the blurring operator is known. The proposed application is to solve the basic 3-D confocal image reconstruction task about the form of the blurring operator, confocal behavior in microscope images can be obtained with only 3-5 acquired image planes. In addition, the stored program capability of the CNN Universal Machine would provide integration of several image processing and detection tasks in the same architecture.<<ETX>>","PeriodicalId":248898,"journal":{"name":"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Deblurring of images by cellular neural networks with applications to microscopy\",\"authors\":\"J.P. Miller, T. Roska, T. Szirányi, K. R. Crounse, L. Chua, L. Nemes\",\"doi\":\"10.1109/CNNA.1994.381673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper it is shown how the Cellular Neural Network (CNN) can be used to perform image and volume deblurring, with particular emphases on applications to microscopy. We discuss the basic linear theory of the CNN including issues of stability and template size. It is observed that a CNN with a small template can be used to implement an Infinite Impulse Response filter. It is then shown how general deblurring problems can be addressed with a CNN when the blurring operator is known. The proposed application is to solve the basic 3-D confocal image reconstruction task about the form of the blurring operator, confocal behavior in microscope images can be obtained with only 3-5 acquired image planes. In addition, the stored program capability of the CNN Universal Machine would provide integration of several image processing and detection tasks in the same architecture.<<ETX>>\",\"PeriodicalId\":248898,\"journal\":{\"name\":\"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.1994.381673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1994.381673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

在本文中,它显示了如何细胞神经网络(CNN)可以用来执行图像和体积去模糊,特别强调在显微镜应用。我们讨论了CNN的基本线性理论,包括稳定性和模板尺寸的问题。观察到一个小模板的CNN可以用来实现无限脉冲响应滤波器。然后展示了当模糊算子已知时,如何用CNN解决一般的去模糊问题。提出的应用是解决关于模糊算子形式的基本三维共焦图像重建任务,仅用3-5个获取的图像平面即可获得显微镜图像的共焦行为。此外,CNN通用机器的存储程序能力将在同一架构中集成多个图像处理和检测任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deblurring of images by cellular neural networks with applications to microscopy
In this paper it is shown how the Cellular Neural Network (CNN) can be used to perform image and volume deblurring, with particular emphases on applications to microscopy. We discuss the basic linear theory of the CNN including issues of stability and template size. It is observed that a CNN with a small template can be used to implement an Infinite Impulse Response filter. It is then shown how general deblurring problems can be addressed with a CNN when the blurring operator is known. The proposed application is to solve the basic 3-D confocal image reconstruction task about the form of the blurring operator, confocal behavior in microscope images can be obtained with only 3-5 acquired image planes. In addition, the stored program capability of the CNN Universal Machine would provide integration of several image processing and detection tasks in the same architecture.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信